Results 1  10
of
308
Reinforcement Learning I: Introduction
, 1998
"... In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search ..."
Abstract

Cited by 5245 (120 self)
 Add to MetaCart
In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search) plus learning (association, memory). We argue that RL is the only field that seriously addresses the special features of the problem of learning from interaction to achieve longterm goals.
A Theory of Cerebellar Function
, 1971
"... A comprehensive theory of cerebellar function is presented, which ties together the known anatomy and physiology of the cerebellum into a patternrecognition data processing system. The cerebellum is postulated to be functionally and structurally equivalent to a modification of the classical Percept ..."
Abstract

Cited by 272 (7 self)
 Add to MetaCart
A comprehensive theory of cerebellar function is presented, which ties together the known anatomy and physiology of the cerebellum into a patternrecognition data processing system. The cerebellum is postulated to be functionally and structurally equivalent to a modification of the classical Perceptron patternclassification device. It is suggested that the mossy fiber  granule cell  Golgi cell input network performs an expansion recoding that enhances the patterndiscrimination capacity and learning speed of the cerebellar Purkinje response cells.
The Extraction of Refined Rules from KnowledgeBased Neural Networks
 Machine Learning
, 1993
"... Neural networks, despite their empiricallyproven abilities, have been little used for the refinement of existing knowledge because this task requires a threestep process. First, knowledge in some form must be inserted into a neural network. Second, the network must be refined. Third, knowledge mus ..."
Abstract

Cited by 224 (4 self)
 Add to MetaCart
(Show Context)
Neural networks, despite their empiricallyproven abilities, have been little used for the refinement of existing knowledge because this task requires a threestep process. First, knowledge in some form must be inserted into a neural network. Second, the network must be refined. Third, knowledge must be extracted from the network. We have previously described a method for the first step of this process. Standard neural learning techniques can accomplish the second step. In this paper, we propose and empirically evaluate a method for the final, and possibly most difficult, step. This method efficiently extracts symbolic rules from trained neural networks. The four major results of empirical tests of this method are that the extracted rules: (1) closely reproduce (and can even exceed) the accuracy of the network from which they are extracted; (2) are superior to the rules produced by methods that directly refine symbolic rules; (3) are superior to those produced by previous techniques fo...
Neurofuzzy modeling and control
 IEEE Proceedings
, 1995
"... Abstract  Fundamental and advanced developments in neurofuzzy synergisms for modeling and control are reviewed. The essential part of neurofuzzy synergisms comes from a common framework called adaptive networks, which uni es both neural networks and fuzzy models. The fuzzy models under the framew ..."
Abstract

Cited by 212 (1 self)
 Add to MetaCart
(Show Context)
Abstract  Fundamental and advanced developments in neurofuzzy synergisms for modeling and control are reviewed. The essential part of neurofuzzy synergisms comes from a common framework called adaptive networks, which uni es both neural networks and fuzzy models. The fuzzy models under the framework of adaptive networks is called ANFIS (AdaptiveNetworkbased Fuzzy Inference System), which possess certain advantages over neural networks. We introduce the design methods for ANFIS in both modeling and control applications. Current problems and future directions for neurofuzzy approaches are also addressed. KeywordsFuzzy logic, neural networks, fuzzy modeling, neurofuzzy modeling, neurofuzzy control, ANFIS. I.
Kernel Methods for Relation Extraction
, 2002
"... We present an application of kernel methods to extracting relations from unstructured natural language sources. ..."
Abstract

Cited by 205 (0 self)
 Add to MetaCart
We present an application of kernel methods to extracting relations from unstructured natural language sources.
Learning and Sequential Decision Making
 LEARNING AND COMPUTATIONAL NEUROSCIENCE
, 1989
"... In this report we show how the class of adaptive prediction methods that Sutton called "temporal difference," or TD, methods are related to the theory of squential decision making. TD methods have been used as "adaptive critics" in connectionist learning systems, and have been pr ..."
Abstract

Cited by 203 (11 self)
 Add to MetaCart
(Show Context)
In this report we show how the class of adaptive prediction methods that Sutton called "temporal difference," or TD, methods are related to the theory of squential decision making. TD methods have been used as "adaptive critics" in connectionist learning systems, and have been proposed as models of animal learning in classical conditioning experiments. Here we relate TD methods to decision tasks formulated in terms of a stochastic dynamical system whose behavior unfolds over time under the influence of a decision maker's actions. Strategies are sought for selecting actions so as to maximize a measure of longterm payoff gain. Mathematically, tasks such as this can be formulated as Markovian decision problems, and numerous methods have been proposed for learning how to solve such problems. We show how a TD method can be understood as a novel synthesis of concepts from the theory of stochastic dynamic programming, which comprises the standard method for solving such tasks when a model of the dynamical system is available, and the theory of parameter estimation, which provides the appropriate context for studying learning rules in the form of equations for updating associative strengths in behavioral models, or connection weights in connectionist networks. Because this report is oriented primarily toward the nonengineer interested in animal learning, it presents tutorials on stochastic sequential decision tasks, stochastic dynamic programming, and parameter estimation.
KnowledgeBased Artificial Neural Networks
, 1994
"... Hybrid learning methods use theoretical knowledge of a domain and a set of classified examples to develop a method for accurately classifying examples not seen during training. The challenge of hybrid learning systems is to use the information provided by one source of information to offset informat ..."
Abstract

Cited by 175 (13 self)
 Add to MetaCart
Hybrid learning methods use theoretical knowledge of a domain and a set of classified examples to develop a method for accurately classifying examples not seen during training. The challenge of hybrid learning systems is to use the information provided by one source of information to offset information missing from the other source. By so doing, a hybrid learning system should learn more effectively than systems that use only one of the information sources. KBANN(KnowledgeBased Artificial Neural Networks) is a hybrid learning system built on top of connectionist learning techniques. It maps problemspecific "domain theories", represented in propositional logic, into neural networks and then refines this reformulated knowledge using backpropagation. KBANN is evaluated by extensive empirical tests on two problems from molecular biology. Among other results, these tests show that the networks created by KBANN generalize better than a wide variety of learning systems, as well as several t...
On the Generalization Ability of Online Learning Algorithms
 IEEE Transactions on Information Theory
, 2001
"... In this paper we show that online algorithms for classification and regression can be naturally used to obtain hypotheses with good datadependent tail bounds on their risk. Our results are proven without requiring complicated concentrationofmeasure arguments and they hold for arbitrary onlin ..."
Abstract

Cited by 173 (8 self)
 Add to MetaCart
(Show Context)
In this paper we show that online algorithms for classification and regression can be naturally used to obtain hypotheses with good datadependent tail bounds on their risk. Our results are proven without requiring complicated concentrationofmeasure arguments and they hold for arbitrary online learning algorithms. Furthermore, when applied to concrete online algorithms, our results yield tail bounds that in many cases are comparable or better than the best known bounds.
Dynamic Branch Prediction with Perceptrons
"... This paper presents a new method for branch prediction. The key idea is to use one of the simplest possible neural networks, the perceptron, as an alternative to the commonly used twobit counters. Our predictor achieves increased accuracy by making use of long branch histories, which are possible b ..."
Abstract

Cited by 158 (19 self)
 Add to MetaCart
(Show Context)
This paper presents a new method for branch prediction. The key idea is to use one of the simplest possible neural networks, the perceptron, as an alternative to the commonly used twobit counters. Our predictor achieves increased accuracy by making use of long branch histories, which are possible because the hardware resources for our method scale linearly with the history length. By contrast, other purely dynamic schemes require exponential resources. We describe our design and evaluate it with respect to two well known predictors. We show that for a 4K byte hardware budget our method improves misprediction rates for the SPEC 2000 benchmarks by 10.1 % over the gshare predictor. Our experiments also provide a better understanding of the situations in which traditional predictors do and do not perform well. Finally, we describe techniques that allow our complex predictor to operate in one cycle.
Perspectives on system identification
 In Plenary talk at the proceedings of the 17th IFAC World Congress, Seoul, South Korea
, 2008
"... System identification is the art and science of building mathematical models of dynamic systems from observed inputoutput data. It can be seen as the interface between the real world of applications and the mathematical world of control theory and model abstractions. As such, it is an ubiquitous ne ..."
Abstract

Cited by 131 (3 self)
 Add to MetaCart
(Show Context)
System identification is the art and science of building mathematical models of dynamic systems from observed inputoutput data. It can be seen as the interface between the real world of applications and the mathematical world of control theory and model abstractions. As such, it is an ubiquitous necessity for successful applications. System identification is a very large topic, with different techniques that depend on the character of the models to be estimated: linear, nonlinear, hybrid, nonparametric etc. At the same time, the area can be characterized by a small number of leading principles, e.g. to look for sustainable descriptions by proper decisions in the triangle of model complexity, information contents in the data, and effective validation. The area has many facets and there are many approaches and methods. A tutorial or a survey in a few pages is not quite possible. Instead, this presentation aims at giving an overview of the “science ” side, i.e. basic principles and results and at pointing to open problem areas in the practical, “art”, side of how to approach and solve a real problem. 1.