Results 1 - 10
of
85
Ensemble Tracking
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2007
"... We consider tracking as a binary classification problem, where an ensemble of weak classifiers is trained on-line to distinguish between the object and the background. The ensemble of weak classifiers is combined into a strong classifier using AdaBoost. The strong classifier is then used to label pi ..."
Abstract
-
Cited by 330 (2 self)
- Add to MetaCart
(Show Context)
We consider tracking as a binary classification problem, where an ensemble of weak classifiers is trained on-line to distinguish between the object and the background. The ensemble of weak classifiers is combined into a strong classifier using AdaBoost. The strong classifier is then used to label pixels in the next frame as either belonging to the object or the background, giving a confidence map. The peak of the map, and hence the new position of the object, is found using mean shift. Temporal coherence is maintained by updating the ensemble with new weak classifiers that are trained on-line during tracking. We show a realization of this method and demonstrate it on several video sequences. 1
Collaborative filtering with temporal dynamics
- In Proc. of KDD ’09
, 2009
"... Customer preferences for products are drifting over time. Product perception and popularity are constantly changing as new selection emerges. Similarly, customer inclinations are evolving, leading them to ever redefine their taste. Thus, modeling temporal dynamics should be a key when designing reco ..."
Abstract
-
Cited by 233 (3 self)
- Add to MetaCart
(Show Context)
Customer preferences for products are drifting over time. Product perception and popularity are constantly changing as new selection emerges. Similarly, customer inclinations are evolving, leading them to ever redefine their taste. Thus, modeling temporal dynamics should be a key when designing recommender systems or general customer preference models. However, this raises unique challenges. Within the eco-system intersecting multiple products and customers, many different characteristics are shifting simultaneously, while many of them influence each other and often those shifts are delicate and associated with a few data instances. This distinguishes the problem from concept drift explorations, where mostly a single concept is tracked. Classical time-window or instancedecay approaches cannot work, as they lose too much signal when discarding data instances. A more sensitive approach is required, which can make better distinctions between transient effects and long term patterns. The paradigm we offer is creating a model tracking the time changing behavior throughout the life span of the data. This allows us to exploit the relevant components of all data instances, while discarding only what is modeled as being irrelevant. Accordingly, we revamp two leading collaborative filtering recommendation approaches. Evaluation is made on a large movie rating dataset by Netflix. Results are encouraging and better than those previously reported on this dataset.
The Problem of Concept Drift: Definitions and Related Work
, 2004
"... In the real world concepts are often not stable but change with time. Typical examples of this are weather prediction rules and customers' preferences. The underlying data distribution may change as well. Often these changes make the model built on old data inconsistent with the new data, and r ..."
Abstract
-
Cited by 104 (5 self)
- Add to MetaCart
In the real world concepts are often not stable but change with time. Typical examples of this are weather prediction rules and customers' preferences. The underlying data distribution may change as well. Often these changes make the model built on old data inconsistent with the new data, and regular updating of the model is necessary. This problem, known as concept drift, complicates the task of learning a model from data and requires special approaches, different from commonly used techniques, which treat arriving instances as equally important contributors to the final concept. This paper considers different types of concept drift, peculiarities of the problem, and gives a critical review of existing approaches to the problem.
Enhanced Reputation Mechanism for Mobile Ad Hoc Networks
- In Proceedings of the 2nd International Conference on Trust Management, LNCS 2995
, 2004
"... Abstract. Interactions between entities unknown to each other are inevitable in the ambient intelligence vision of service access anytime, anywhere. Trust management through a reputation mechanism to facilitate such interactions is recognized as a vital part of mobile ad hoc networks, which features ..."
Abstract
-
Cited by 75 (3 self)
- Add to MetaCart
(Show Context)
Abstract. Interactions between entities unknown to each other are inevitable in the ambient intelligence vision of service access anytime, anywhere. Trust management through a reputation mechanism to facilitate such interactions is recognized as a vital part of mobile ad hoc networks, which features lack of infrastructure, autonomy, mobility and resource scarcity of composing light-weight terminals. However, the design of a reputation mechanism is faced by challenges of how to enforce reputation information sharing and honest recommendation elicitation. In this paper, we present a reputation model, which incorporates two essential dimensions, time and context, along with mechanisms supporting reputation formation, evolution and propagation. By introducing the notion of recommendation reputation, our reputation mechanism shows effectiveness in distinguishing truth-telling and lying agents, obtaining true reputation of an agent, and ensuring reliability against attacks of defame and collusion. 1
A case-based technique for tracking concept drift in spam filtering
, 2005
"... Spam filtering is a particularly challenging machine learning task as the data distribution and concept being learned changes over time. It exhibits a particularly awkward form of concept drift as the change is driven by spammers wishing to circumvent spam filters. In this paper we show that lazy le ..."
Abstract
-
Cited by 39 (16 self)
- Add to MetaCart
(Show Context)
Spam filtering is a particularly challenging machine learning task as the data distribution and concept being learned changes over time. It exhibits a particularly awkward form of concept drift as the change is driven by spammers wishing to circumvent spam filters. In this paper we show that lazy learning techniques are appropriate for such dynamically changing contexts. We present a case-based system for spam filtering that can learn dynamically. We evaluate its performance as the case-base is updated with new cases. We also explore the benefit of periodically redoing the feature selection process to bring new features into play. Our evaluation shows that these two levels of model update are effective in tracking concept drift.
Combining Proactive and Reactive Predictions for Data Streams
, 2005
"... Mining data streams is important in both science and commerce. Two major challenges are (1) the data may grow without limit so that it is difficult to retain a long history; and (2) the underlying concept of the data may change over time. Different from common practice that keeps recent raw data, th ..."
Abstract
-
Cited by 24 (5 self)
- Add to MetaCart
Mining data streams is important in both science and commerce. Two major challenges are (1) the data may grow without limit so that it is difficult to retain a long history; and (2) the underlying concept of the data may change over time. Different from common practice that keeps recent raw data, this paper uses a measure of conceptual equivalence to organize the data history into a history of concepts. Along the journey of concept change, it identifies new concepts as well as re-appearing ones, and learns transition patterns among concepts to help prediction. Different from conventional methodology that passively waits until the concept changes, this paper incorporates proactive and reactive predictions. In a proactive mode, it anticipates what the new concept will be if a future concept change takes place, and prepares prediction strategies in advance. If the anticipation turns out to be correct, a proper prediction model can be launched instantly upon the concept change. If not, it promptly resorts to a reactive mode: adapting a prediction model to the new data. A system RePro is proposed to implement these new ideas. Experiments compare the system with representative existing prediction methods on various benchmark data sets that represent diversified scenarios of concept change. Empirical evidence demonstrates that the proposed methodology is an effective and efficient solution to prediction for data streams.
The Impact of Diversity on On-line Ensemble Learning in the Presence of Concept Drift
, 2009
"... On-line learning algorithms often have to operate in the presence of concept drift (i.e., the concepts to be learnt can change with time). This paper presents a new categorization for concept drift, separating drifts according to different criteria into mutually exclusive and non-heterogeneous categ ..."
Abstract
-
Cited by 22 (3 self)
- Add to MetaCart
On-line learning algorithms often have to operate in the presence of concept drift (i.e., the concepts to be learnt can change with time). This paper presents a new categorization for concept drift, separating drifts according to different criteria into mutually exclusive and non-heterogeneous categories. Moreover, although ensembles of learning machines have been used to learn in the presence of concept drift, there has been no deep study of why they can be helpful for that and which of their features can contribute or not for that. As diversity is one of these features, we present a diversity analysis in the presence of different types of drift. We show that, before the drift, ensembles with less diversity obtain lower test errors. On the other hand, it is a good strategy to maintain highly diverse ensembles to obtain lower test errors shortly after the drift independent on the type of drift, even though high diversity is more important for more severe drifts. Longer after the drift, high diversity becomes less important. Diversity by itself can help to reduce the initial increase in error caused by a drift, but does not provide a faster recovery from drifts in long term.
Adapting SVM Classifiers to Data with Shifted Distributions
"... Many data mining applications can benefit from adapting existing classifiers to new data with shifted distributions. In this paper, we present Adaptive Support Vector Machine (Adapt-SVM) as an efficient model for adapting a SVM classifier trained from one dataset to a new dataset where only limited ..."
Abstract
-
Cited by 17 (0 self)
- Add to MetaCart
(Show Context)
Many data mining applications can benefit from adapting existing classifiers to new data with shifted distributions. In this paper, we present Adaptive Support Vector Machine (Adapt-SVM) as an efficient model for adapting a SVM classifier trained from one dataset to a new dataset where only limited labeled examples are available. By introducing a new regularizer into SVM’s objective function, Adapt-SVM aims to minimize both the classification error over the training examples, and the discrepancy between the adapted and original classifier. We also propose a selective sampling strategy based on the loss minimization principle to seed the most informative examples for classifier adaptation. Experiments on an artificial classification task and on a benchmark video classification task shows that Adapt-SVM outperforms several baseline methods in terms of accuracy and/or efficiency. 1
Handling local concept drift with dynamic integration of classifiers: domain of antibiotic resistance in nosocomial infections
- In: Proc. 19th IEEE Int. Symposium on Computer-Based Medical Systems CBMS’2006, IEEE CS
, 2006
"... In the real world concepts and data distributions are often not stable but change with time. This problem, known as concept drift, complicates the task of learning a model from data and requires special approaches, different from commonly used techniques, which treat arriving instances as equally im ..."
Abstract
-
Cited by 14 (3 self)
- Add to MetaCart
(Show Context)
In the real world concepts and data distributions are often not stable but change with time. This problem, known as concept drift, complicates the task of learning a model from data and requires special approaches, different from commonly used techniques, which treat arriving instances as equally important contributors to the target concept. Among the most popular and effective approaches to handle concept drift is ensemble learning, where a set of models built over different time periods is maintained and the best model is selected or the predictions of models are combined. In this paper we consider the use of an ensemble integration technique that helps to better handle concept drift at the instance level. Our experiments with real-world antibiotic resistance data demonstrate that dynamic integration of classifiers built over small time intervals can be more effective than globally weighted voting which is currently the most commonly used integration approach for handling concept drift with ensembles. 1.
Learning terrain segmentation with classifier ensembles for autonomous robot navigation in unstructured environments
- JOURNAL OF FIELD ROBOTICS
, 2009
"... Autonomous robot navigation in unstructured outdoor environments is a challenging area of active research and is currently unsolved. The navigation task requires identifying safe, traversable paths that allow the robot to progress toward a goal while avoiding obstacles. Stereo is an effective tool i ..."
Abstract
-
Cited by 10 (3 self)
- Add to MetaCart
(Show Context)
Autonomous robot navigation in unstructured outdoor environments is a challenging area of active research and is currently unsolved. The navigation task requires identifying safe, traversable paths that allow the robot to progress toward a goal while avoiding obstacles. Stereo is an effective tool in the near field, but used alone leads to a common failure mode in autonomous navigation in which suboptimal trajectories are followed due to nearsightedness, or the robot’s inability to distinguish obstacles and safe terrain in the far field. This can be addressed through the use of machine learning methods to accomplish near-to-far learning, in which near-field terrain appearance and stereo readings are used to train models able to predict far-field terrain. This paper proposes to enhance existing, memoryless near-to-far learning approaches through the use of classifier ensembles that allow terrain models trained on data seen at different points in time to be preserved and referenced later. These stored models serve as memory, and we show that they can be leveraged for more effective far-field terrain classification on future images seen by the robot. A five-factor, full-factorial, repeated-measures experimental evaluation is performed on hand-labeled data sets taken directly from the problem domain. The experiments