Results 1  10
of
357
Hierarchical Dirichlet processes
 Journal of the American Statistical Association
, 2004
"... program. The authors wish to acknowledge helpful discussions with Lancelot James and Jim Pitman and the referees for useful comments. 1 We consider problems involving groups of data, where each observation within a group is a draw from a mixture model, and where it is desirable to share mixture comp ..."
Abstract

Cited by 794 (69 self)
 Add to MetaCart
(Show Context)
program. The authors wish to acknowledge helpful discussions with Lancelot James and Jim Pitman and the referees for useful comments. 1 We consider problems involving groups of data, where each observation within a group is a draw from a mixture model, and where it is desirable to share mixture components between groups. We assume that the number of mixture components is unknown a priori and is to be inferred from the data. In this setting it is natural to consider sets of Dirichlet processes, one for each group, where the wellknown clustering property of the Dirichlet process provides a nonparametric prior for the number of mixture components within each group. Given our desire to tie the mixture models in the various groups, we consider a hierarchical model, specifically one in which the base measure for the child Dirichlet processes is itself distributed according to a Dirichlet process. Such a base measure being discrete, the child Dirichlet processes necessarily share atoms. Thus, as desired, the mixture models in the different groups necessarily share mixture components. We discuss representations of hierarchical Dirichlet processes in terms of
Gibbs Sampling Methods for StickBreaking Priors
"... ... In this paper we present two general types of Gibbs samplers that can be used to fit posteriors of Bayesian hierarchical models based on stickbreaking priors. The first type of Gibbs sampler, referred to as a Polya urn Gibbs sampler, is a generalized version of a widely used Gibbs sampling meth ..."
Abstract

Cited by 285 (17 self)
 Add to MetaCart
(Show Context)
... In this paper we present two general types of Gibbs samplers that can be used to fit posteriors of Bayesian hierarchical models based on stickbreaking priors. The first type of Gibbs sampler, referred to as a Polya urn Gibbs sampler, is a generalized version of a widely used Gibbs sampling method currently employed for Dirichlet process computing. This method applies to stickbreaking priors with a known P'olya urn characterization; that is priors with an explicit and simple prediction rule. Our second method, the blocked Gibbs sampler, is based on a entirely different approach that works by directly sampling values from the posterior of the random measure. The blocked Gibbs sampler can be viewed as a more general approach as it works without requiring an explicit prediction rule. We find that the blocked Gibbs avoids some of the limitations seen with the Polya urn approach and should be simpler for nonexperts to use.
The twoparameter PoissonDirichlet distribution derived from a stable subordinator.
, 1995
"... The twoparameter PoissonDirichlet distribution, denoted pd(ff; `), is a distribution on the set of decreasing positive sequences with sum 1. The usual PoissonDirichlet distribution with a single parameter `, introduced by Kingman, is pd(0; `). Known properties of pd(0; `), including the Markov ..."
Abstract

Cited by 283 (35 self)
 Add to MetaCart
The twoparameter PoissonDirichlet distribution, denoted pd(ff; `), is a distribution on the set of decreasing positive sequences with sum 1. The usual PoissonDirichlet distribution with a single parameter `, introduced by Kingman, is pd(0; `). Known properties of pd(0; `), including the Markov chain description due to VershikShmidtIgnatov, are generalized to the twoparameter case. The sizebiased random permutation of pd(ff; `) is a simple residual allocation model proposed by Engen in the context of species diversity, and rediscovered by Perman and the authors in the study of excursions of Brownian motion and Bessel processes. For 0 ! ff ! 1, pd(ff; 0) is the asymptotic distribution of ranked lengths of excursions of a Markov chain away from a state whose recurrence time distribution is in the domain of attraction of a stable law of index ff. Formulae in this case trace back to work of Darling, Lamperti and Wendel in the 1950's and 60's. The distribution of ranked lengths of e...
Infinite Latent Feature Models and the Indian Buffet Process
, 2005
"... We define a probability distribution over equivalence classes of binary matrices with a finite number of rows and an unbounded number of columns. This distribution ..."
Abstract

Cited by 231 (42 self)
 Add to MetaCart
We define a probability distribution over equivalence classes of binary matrices with a finite number of rows and an unbounded number of columns. This distribution
Variational inference for Dirichlet process mixtures
 Bayesian Analysis
, 2005
"... Abstract. Dirichlet process (DP) mixture models are the cornerstone of nonparametric Bayesian statistics, and the development of MonteCarlo Markov chain (MCMC) sampling methods for DP mixtures has enabled the application of nonparametric Bayesian methods to a variety of practical data analysis prob ..."
Abstract

Cited by 198 (20 self)
 Add to MetaCart
(Show Context)
Abstract. Dirichlet process (DP) mixture models are the cornerstone of nonparametric Bayesian statistics, and the development of MonteCarlo Markov chain (MCMC) sampling methods for DP mixtures has enabled the application of nonparametric Bayesian methods to a variety of practical data analysis problems. However, MCMC sampling can be prohibitively slow, and it is important to explore alternatives. One class of alternatives is provided by variational methods, a class of deterministic algorithms that convert inference problems into optimization problems (Opper and Saad 2001; Wainwright and Jordan 2003). Thus far, variational methods have mainly been explored in the parametric setting, in particular within the formalism of the exponential family (Attias 2000; Ghahramani and Beal 2001; Blei et al. 2003). In this paper, we present a variational inference algorithm for DP mixtures. We present experiments that compare the algorithm to Gibbs sampling algorithms for DP mixtures of Gaussians and present an application to a largescale image analysis problem.
A SplitMerge Markov Chain Monte Carlo Procedure for the Dirichlet Process Mixture Model
 Journal of Computational and Graphical Statistics
, 2000
"... . We propose a splitmerge Markov chain algorithm to address the problem of inefficient sampling for conjugate Dirichlet process mixture models. Traditional Markov chain Monte Carlo methods for Bayesian mixture models, such as Gibbs sampling, can become trapped in isolated modes corresponding to an ..."
Abstract

Cited by 124 (0 self)
 Add to MetaCart
(Show Context)
. We propose a splitmerge Markov chain algorithm to address the problem of inefficient sampling for conjugate Dirichlet process mixture models. Traditional Markov chain Monte Carlo methods for Bayesian mixture models, such as Gibbs sampling, can become trapped in isolated modes corresponding to an inappropriate clustering of data points. This article describes a MetropolisHastings procedure that can escape such local modes by splitting or merging mixture components. Our MetropolisHastings algorithm employs a new technique in which an appropriate proposal for splitting or merging components is obtained by using a restricted Gibbs sampling scan. We demonstrate empirically that our method outperforms the Gibbs sampler in situations where two or more components are similar in structure. Key words: Dirichlet process mixture model, Markov chain Monte Carlo, MetropolisHastings algorithm, Gibbs sampler, splitmerge updates 1 Introduction Mixture models are often applied to density estim...
A bayesian framework for word segmentation: Exploring the effects of context
 In 46th Annual Meeting of the ACL
, 2009
"... Since the experiments of Saffran et al. (1996a), there has been a great deal of interest in the question of how statistical regularities in the speech stream might be used by infants to begin to identify individual words. In this work, we use computational modeling to explore the effects of differen ..."
Abstract

Cited by 104 (28 self)
 Add to MetaCart
Since the experiments of Saffran et al. (1996a), there has been a great deal of interest in the question of how statistical regularities in the speech stream might be used by infants to begin to identify individual words. In this work, we use computational modeling to explore the effects of different assumptions the learner might make regarding the nature of words – in particular, how these assumptions affect the kinds of words that are segmented from a corpus of transcribed childdirected speech. We develop several models within a Bayesian ideal observer framework, and use them to examine the consequences of assuming either that words are independent units, or units that help to predict other units. We show through empirical and theoretical results that the assumption of independence causes the learner to undersegment the corpus, with many two and threeword sequences (e.g. what’s that, do you, in the house) misidentified as individual words. In contrast, when the learner assumes that words are predictive, the resulting segmentation is far more accurate. These results indicate that taking context into account is important for a statistical word segmentation strategy to be successful, and raise the possibility that even young infants may be able to exploit more subtle statistical patterns than have usually been considered. 1
The nested chinese restaurant process and bayesian inference of topic hierarchies
, 2007
"... We present the nested Chinese restaurant process (nCRP), a stochastic process which assigns probability distributions to infinitelydeep, infinitelybranching trees. We show how this stochastic process can be used as a prior distribution in a Bayesian nonparametric model of document collections. Spe ..."
Abstract

Cited by 100 (13 self)
 Add to MetaCart
(Show Context)
We present the nested Chinese restaurant process (nCRP), a stochastic process which assigns probability distributions to infinitelydeep, infinitelybranching trees. We show how this stochastic process can be used as a prior distribution in a Bayesian nonparametric model of document collections. Specifically, we present an application to information retrieval in which documents are modeled as paths down a random tree, and the preferential attachment dynamics of the nCRP leads to clustering of documents according to sharing of topics at multiple levels of abstraction. Given a corpus of documents, a posterior inference algorithm finds an approximation to a posterior distribution over trees, topics and allocations of words to levels of the tree. We demonstrate this algorithm on collections of scientific abstracts from several journals. This model exemplifies a recent trend in statistical machine learning—the use of Bayesian nonparametric methods to infer distributions on flexible data structures.
Sequential Importance Sampling for Nonparametric Bayes Models: The Next Generation
 Journal of Statistics
, 1998
"... this paper, we exploit the similarities between the Gibbs sampler and the SIS, bringing over the improvements for Gibbs sampling algorithms to the SIS setting for nonparametric Bayes problems. These improvements result in an improved sampler and help satisfy questions of Diaconis (1995) pertaining t ..."
Abstract

Cited by 82 (6 self)
 Add to MetaCart
(Show Context)
this paper, we exploit the similarities between the Gibbs sampler and the SIS, bringing over the improvements for Gibbs sampling algorithms to the SIS setting for nonparametric Bayes problems. These improvements result in an improved sampler and help satisfy questions of Diaconis (1995) pertaining to convergence. Such an effort can see wide applications in many other problems related to dynamic systems where the SIS is useful (Berzuini et al. 1996; Liu and Chen 1996). Section 2 describes the specific model that we consider. For illustration we focus discussion on the betabinomial model, although the methods are applicable to other conjugate families. In Section 3, we describe the first generation of the SIS and Gibbs sampler in this context, and present the necessary conditional distributions upon which the techniques rely. Section 4 describes the alterations that create the second generation techniques, and provides specific algorithms for the model we consider. Section 5 presents a comparison of the techniques on a large set of data. Section 6 provides theory that ensures the proposed methods work and that is generally applicable to many other problems using importance sampling approaches. The final section presents discussion. 2 The Model
Generalized weighted Chinese restaurant processes for species sampling mixture models
 Statistica Sinica
, 2003
"... Abstract: The class of species sampling mixture models is introduced as an extension of semiparametric models based on the Dirichlet process to models based on the general class of species sampling priors, or equivalently the class of all exchangeable urn distributions. Using Fubini calculus in conj ..."
Abstract

Cited by 72 (9 self)
 Add to MetaCart
Abstract: The class of species sampling mixture models is introduced as an extension of semiparametric models based on the Dirichlet process to models based on the general class of species sampling priors, or equivalently the class of all exchangeable urn distributions. Using Fubini calculus in conjunction with Pitman (1995, 1996), we derive characterizations of the posterior distribution in terms of a posterior partition distribution that extend the results of Lo (1984) for the Dirichlet process. These results provide a better understanding of models and have both theoretical and practical applications. To facilitate the use of our models we generalize the work in Brunner, Chan, James and Lo (2001) by extending their weighted Chinese restaurant (WCR) Monte Carlo procedure, an i.i.d. sequential importance sampling (SIS) procedure for approximating posterior mean functionals based on the Dirichlet process, to the case of approximation of mean functionals and additionally their posterior laws in species sampling mixture models. We also discuss collapsed Gibbs sampling, Pólya urn Gibbs sampling and a Pólya urn SIS scheme. Our framework allows for numerous applications, including multiplicative counting process models subject to weighted gamma processes, as well as nonparametric and semiparametric hierarchical models based on the Dirichlet process, its twoparameter extension, the PitmanYor process and finite dimensional Dirichlet priors. Key words and phrases: Dirichlet process, exchangeable partition, finite dimensional Dirichlet prior, twoparameter PoissonDirichlet process, prediction rule, random probability measure, species sampling sequence.