A small complete category. Annals of Pure and Applied Logic, 40:135 – 165 (1988)

by J M E Hyland
Venue:A⊸X) → (B⊸X) → X (X �∈ftv(A,B)) B· A =def ∀X. (B → A ⊸ X) → X (X �∈ftv(B,A)) ∃ ◦ X. A =def ∀Y . (∀X. (A ⊸ Y )) → Y (Y �∈ftv(A)) ∃ ◦ X. A =def ∀Y . (∀X. (A ⊸ Y )) → Y (Y �∈ftv(A)) µ ◦ X. A =def ∀X. (A ⊸ X) → X (X