Results 1  10
of
46
Algorithmic mechanism design
 Games and Economic Behavior
, 1999
"... We consider algorithmic problems in a distributed setting where the participants cannot be assumed to follow the algorithm but rather their own selfinterest. As such participants, termed agents, are capable of manipulating the algorithm, the algorithm designer should ensure in advance that the agen ..."
Abstract

Cited by 674 (21 self)
 Add to MetaCart
We consider algorithmic problems in a distributed setting where the participants cannot be assumed to follow the algorithm but rather their own selfinterest. As such participants, termed agents, are capable of manipulating the algorithm, the algorithm designer should ensure in advance that the agents ’ interests are best served by behaving correctly. Following notions from the field of mechanism design, we suggest a framework for studying such algorithms. Our main technical contribution concerns the study of a representative task scheduling problem for which the standard mechanism design tools do not suffice. Journal of Economic Literature
Sprite: A Simple, CheatProof, CreditBased System for Mobile AdHoc Networks
 in Proceedings of IEEE INFOCOM
, 2002
"... Mobile ad hoc networking has been an active research area for several years. How to stimulate cooperation among selfish mobile nodes, however, is not well addressed yet. In this paper, we propose Sprite, a simple, cheatproof, creditbased system for stimulating cooperation among selfish nodes in mob ..."
Abstract

Cited by 473 (18 self)
 Add to MetaCart
Mobile ad hoc networking has been an active research area for several years. How to stimulate cooperation among selfish mobile nodes, however, is not well addressed yet. In this paper, we propose Sprite, a simple, cheatproof, creditbased system for stimulating cooperation among selfish nodes in mobile ad hoc networks. Our system provides incentive for mobile nodes to cooperate and report actions honestly. Compared with previous approaches, our system does not require any tamperproof hardware at any node. Furthermore, we present a formal model of our system and prove its properties. Evaluations of a prototype implementation show that the overhead of our system is small. Simulations and analysis show that mobile nodes can cooperate and forward each other's messages, unless the resource of each node is extremely low.
Sharing the Cost of Multicast Transmissions
, 2001
"... We investigate costsharing algorithms for multicast transmission. Economic considerations point to two distinct mechanisms, marginal cost and Shapley value, as the two solutions most appropriate in this context. We prove that the former has a natural algorithm that uses only two messages per link o ..."
Abstract

Cited by 291 (19 self)
 Add to MetaCart
(Show Context)
We investigate costsharing algorithms for multicast transmission. Economic considerations point to two distinct mechanisms, marginal cost and Shapley value, as the two solutions most appropriate in this context. We prove that the former has a natural algorithm that uses only two messages per link of the multicast tree, while we give evidence that the latter requires a quadratic total number of messages. We also show that the welfare value achieved by an optimal multicast tree is NPhard to approximate within any constant factor, even for boundeddegree networks. The lowerbound proof for the Shapley value uses a novel algebraic technique for bounding from below the number of messages exchanged in a distributed computation; this technique may prove useful in other contexts as well.
Truth revelation in approximately efficient combinatorial auctions
 Journal of the ACM
, 2002
"... Abstract. Some important classical mechanisms considered in Microeconomics and Game Theory require the solution of a difficult optimization problem. This is true of mechanisms for combinatorial auctions, which have in recent years assumed practical importance, and in particular of the gold standard ..."
Abstract

Cited by 236 (1 self)
 Add to MetaCart
Abstract. Some important classical mechanisms considered in Microeconomics and Game Theory require the solution of a difficult optimization problem. This is true of mechanisms for combinatorial auctions, which have in recent years assumed practical importance, and in particular of the gold standard for combinatorial auctions, the Generalized Vickrey Auction (GVA). Traditional analysis of these mechanisms—in particular, their truth revelation properties—assumes that the optimization problems are solved precisely. In reality, these optimization problems can usually be solved only in an approximate fashion. We investigate the impact on such mechanisms of replacing exact solutions by approximate ones. Specifically, we look at a particular greedy optimization method. We show that the GVA payment scheme does not provide for a truth revealing mechanism. We introduce another scheme that does guarantee truthfulness for a restricted class of players. We demonstrate the latter property by identifying natural properties for combinatorial auctions and showing that, for our restricted class of players, they imply that truthful strategies are dominant. Those properties have applicability beyond the specific auction studied.
Detection and Handling of MAC Layer Misbehavior in Wireless Networks
, 2002
"... Selfish hosts in wireless networks that fail to adhere to the MAC protocol may obtain an unfair share of the channel bandwidth. We present modifications to the IEEE 802.11 backoff mechanism to simplify detection of such selfish hosts. We also present a correction scheme for penalizing greedy misbeha ..."
Abstract

Cited by 142 (2 self)
 Add to MetaCart
Selfish hosts in wireless networks that fail to adhere to the MAC protocol may obtain an unfair share of the channel bandwidth. We present modifications to the IEEE 802.11 backoff mechanism to simplify detection of such selfish hosts. We also present a correction scheme for penalizing greedy misbehavior which attempts to restrict the misbehaving nodes to a fair share of the channel bandwidth. Simulation results indicate that our detection and correction schemes are fairly successful in handling MAC layer misbehavior.
Truthful approximation mechanisms for restricted combinatorial auctions
, 2002
"... When attempting to design a truthful mechanism for a computationally hard problem such as combinatorial auctions, one is faced with the problem that most efficiently computable heuristics can not be embedded in any truthful mechanism (e.g. VCGlike payment rules will not ensure truthfulness). We dev ..."
Abstract

Cited by 130 (5 self)
 Add to MetaCart
(Show Context)
When attempting to design a truthful mechanism for a computationally hard problem such as combinatorial auctions, one is faced with the problem that most efficiently computable heuristics can not be embedded in any truthful mechanism (e.g. VCGlike payment rules will not ensure truthfulness). We develop a set of techniques that allow constructing efficiently computable truthful mechanisms for combinatorial auctions in the special case where each bidder desires a specific known subset of items and only the valuation is unknown by the mechanism (the single parameter case). For this case we extend the work of Lehmann O’Callaghan, and Shoham, who presented greedy heuristics. We show how to use IFTHENELSE constructs, perform a partial search, and use the LP relaxation. We apply these techniques for several canonical types of combinatorial auctions, obtaining truthful mechanisms with provable approximation ratios. 1
Incentive compatible multi unit combinatorial auctions
 In TARK 03
, 2003
"... This paper deals with multiunit combinatorial auctions where there are n types of goods for sale, and for each good there is some fixed number of units. We focus on the case where each bidder desires a relatively small number of units of each good. In particular, this includes the case where each g ..."
Abstract

Cited by 113 (13 self)
 Add to MetaCart
This paper deals with multiunit combinatorial auctions where there are n types of goods for sale, and for each good there is some fixed number of units. We focus on the case where each bidder desires a relatively small number of units of each good. In particular, this includes the case where each good has exactly k units, and each bidder desires no more than a single unit of each good. We provide incentive compatible mechanisms for combinatorial auctions for the general case where bidders are not limited to single minded valuations. The mechanisms we give have approximation ratios close to the best possible for both online and offline scenarios. This is the first result where nonVCG mechanisms are derived for nonsingle minded bidders for a natural model of combinatorial auctions.
Weak monotonicity suffices for truthfulness on convex domains
 In Proceedings 6th ACM Conference on Electronic Commerce (EC
, 2005
"... Weak monotonicity is a simple necessary condition for a social choice function to be implementable by a truthful mechanism. Roberts [10] showed that it is sufficient for all social choice functions whose domain is unrestricted. Lavi, Mu’alem and Nisan [6] proved the sufficiency of weak monotonicity ..."
Abstract

Cited by 79 (0 self)
 Add to MetaCart
Weak monotonicity is a simple necessary condition for a social choice function to be implementable by a truthful mechanism. Roberts [10] showed that it is sufficient for all social choice functions whose domain is unrestricted. Lavi, Mu’alem and Nisan [6] proved the sufficiency of weak monotonicity for functions over orderbased domains and Gui, Muller and Vohra [5] proved sufficiency for orderbased domains with range constraints and for other special types of linear inequality constraints on the domain. Here we generalize these results by showing that weak monotonicity is sufficient for functions defined on any convex domain. 1
Coordination mechanisms
 PROCEEDINGS OF THE 31ST INTERNATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES AND PROGRAMMING, IN: LECTURE NOTES IN COMPUTER SCIENCE
, 2004
"... We introduce the notion of coordination mechanisms to improve the performance in systems with independent selfish and noncolluding agents. The quality of a coordination mechanism is measured by its price of anarchy—the worstcase performance of a Nash equilibrium over the (centrally controlled) soc ..."
Abstract

Cited by 57 (6 self)
 Add to MetaCart
(Show Context)
We introduce the notion of coordination mechanisms to improve the performance in systems with independent selfish and noncolluding agents. The quality of a coordination mechanism is measured by its price of anarchy—the worstcase performance of a Nash equilibrium over the (centrally controlled) social optimum. We give upper and lower bounds for the price of anarchy for selfish task allocation and congestion games.
Stackelberg thresholds in network routing games or the value of altruism
 EC'07
, 2007
"... Noncooperative network routing games are a natural model of users trying to selfishly route flow through a network in order to minimize their own delays. It is well known that the solution resulting from this selfish routing (called the Nash equilibrium) can have social cost strictly higher than the ..."
Abstract

Cited by 24 (0 self)
 Add to MetaCart
Noncooperative network routing games are a natural model of users trying to selfishly route flow through a network in order to minimize their own delays. It is well known that the solution resulting from this selfish routing (called the Nash equilibrium) can have social cost strictly higher than the cost of the optimum solution. One way to improve the quality of the resulting solution is to centrally control a fraction of the flow. A natural problem for the network administrator then is to route the centrally controlled flow in such a way that the overall cost of the solution is minimized after the remaining fraction has routed itself selfishly. This problem falls in the class of wellstudied Stackelberg routing games. We consider the scenario where the network administrator wants the final solution to be (strictly) better than the Nash equilibrium. In other words, she wants to control enough flow such that the cost of the resulting solution is strictly less than the cost of the Nash equilibrium. We call the minimum fraction of users that must be centrally routed to improve the quality of the resulting solution the Stackelberg threshold. We give a closed form expression for the Stackelberg threshold for parallel links networks with linear latency functions. The expression is in terms of Nash equilibrium flows and optimum flows. It turns out that the Stackelberg threshold is the minimum of Nash flows on links which have more optimum flow than Nash flow. Using our approach to characterize the Stackelberg thresholds, we are able to give a simpler proof of an earlier result which finds the minimum fraction required to be centrally controlled to induce an optimum solution.