Results 21  30
of
744
The Bayes Net Toolbox for MATLAB
 Computing Science and Statistics
, 2001
"... The Bayes Net Toolbox (BNT) is an opensource Matlab package for directed graphical models. BNT supports many kinds of nodes (probability distributions), exact and approximate inference, parameter and structure learning, and static and dynamic models. BNT is widely used in teaching and research: the ..."
Abstract

Cited by 176 (2 self)
 Add to MetaCart
The Bayes Net Toolbox (BNT) is an opensource Matlab package for directed graphical models. BNT supports many kinds of nodes (probability distributions), exact and approximate inference, parameter and structure learning, and static and dynamic models. BNT is widely used in teaching and research: the web page has received over 28,000 hits since May 2000. In this paper, we discuss a broad spectrum of issues related to graphical models (directed and undirected), and describe, at a highlevel, how BNT was designed to cope with them all. We also compare BNT to other software packages for graphical models, and to the nascent OpenBayes effort.
A Guide to the Literature on Learning Probabilistic Networks From Data
, 1996
"... This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the ..."
Abstract

Cited by 172 (0 self)
 Add to MetaCart
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the different methodological communities, such as Bayesian, description length, and classical statistics. Basic concepts for learning and Bayesian networks are introduced and methods are then reviewed. Methods are discussed for learning parameters of a probabilistic network, for learning the structure, and for learning hidden variables. The presentation avoids formal definitions and theorems, as these are plentiful in the literature, and instead illustrates key concepts with simplified examples. Keywords Bayesian networks, graphical models, hidden variables, learning, learning structure, probabilistic networks, knowledge discovery. I. Introduction Probabilistic networks or probabilistic gra...
A Bayesian approach to learning Bayesian networks with local structure
 In Proceedings of Thirteenth Conference on Uncertainty in Artificial Intelligence
, 1997
"... Recently several researchers have investigated techniques for using data to learn Bayesian networks containing compact representations for the conditional probability distributions (CPDs) stored at each node. The majority of this work has concentrated on using decisiontree representations for the C ..."
Abstract

Cited by 167 (14 self)
 Add to MetaCart
Recently several researchers have investigated techniques for using data to learn Bayesian networks containing compact representations for the conditional probability distributions (CPDs) stored at each node. The majority of this work has concentrated on using decisiontree representations for the CPDs. In addition, researchers typically apply nonBayesian (or asymptotically Bayesian) scoring functions such as MDL to evaluate the goodnessoffit of networks to the data. In this paper we investigate a Bayesian approach to learning Bayesian networks that contain the more general decisiongraph representations of the CPDs. First, we describe how to evaluate the posterior probability— that is, the Bayesian score—of such a network, given a database of observed cases. Second, we describe various search spaces that can be used, in conjunction with a scoring function and a search procedure, to identify one or more highscoring networks. Finally, we present an experimental evaluation of the search spaces, using a greedy algorithm and a Bayesian scoring function. 1
Probabilistic independence networks for hidden Markov probability models
, 1996
"... Graphical techniques for modeling the dependencies of random variables have been explored in a variety of different areas including statistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics. Formalisms for manipulating these models have been develop ..."
Abstract

Cited by 167 (12 self)
 Add to MetaCart
Graphical techniques for modeling the dependencies of random variables have been explored in a variety of different areas including statistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics. Formalisms for manipulating these models have been developed relatively independently in these research communities. In this paper we explore hidden Markov models (HMMs) and related structures within the general framework of probabilistic independence networks (PINs). The paper contains a selfcontained review of the basic principles of PINs. It is shown that the wellknown forwardbackward (FB) and Viterbi algorithms for HMMs are special cases of more general inference algorithms for arbitrary PINs. Furthermore, the existence of inference and estimation algorithms for more general graphical models provides a set of analysis tools for HMM practitioners who wish to explore a richer class of HMM structures. Examples of relatively complex models to handle sensor fusion and coarticulation in speech recognition are introduced and treated within the graphical model framework to illustrate the advantages of the general approach.
Optimal Structure Identification with Greedy Search
, 2002
"... In this paper we prove the socalled "Meek Conjecture". In particular, we show that if a is an independence map of another DAG then there exists a finite sequence of edge additions and covered edge reversals in such that (1) after each edge modification and (2) after all modifications ..."
Abstract

Cited by 161 (1 self)
 Add to MetaCart
In this paper we prove the socalled "Meek Conjecture". In particular, we show that if a is an independence map of another DAG then there exists a finite sequence of edge additions and covered edge reversals in such that (1) after each edge modification and (2) after all modifications H.
Online Learning of Approximate Dependency Parsing Algorithms
 In Proc. of EACL
, 2006
"... In this paper we extend the maximum spanning tree (MST) dependency parsing framework of McDonald et al. (2005c) to incorporate higherorder feature representations and allow dependency structures with multiple parents per word. We show that those extensions can make the MST framework computationally ..."
Abstract

Cited by 160 (9 self)
 Add to MetaCart
In this paper we extend the maximum spanning tree (MST) dependency parsing framework of McDonald et al. (2005c) to incorporate higherorder feature representations and allow dependency structures with multiple parents per word. We show that those extensions can make the MST framework computationally intractable, but that the intractability can be circumvented with new approximate parsing algorithms. We conclude with experiments showing that discriminative online learning using those approximate algorithms achieves the best reported parsing accuracy for Czech and Danish. 1
Inferring Subnetworks from Perturbed Expression Profiles
, 2001
"... Genomewide expression profiles of genetic mutants provide a wide variety of measurements of cellular responses to perturbations. Typical analysis of such data identifies genes affected by perturbation and uses clustering to group genes of similar function. In this paper we discover a finer structur ..."
Abstract

Cited by 159 (12 self)
 Add to MetaCart
Genomewide expression profiles of genetic mutants provide a wide variety of measurements of cellular responses to perturbations. Typical analysis of such data identifies genes affected by perturbation and uses clustering to group genes of similar function. In this paper we discover a finer structure of interactions between genes, such as causality, mediation, activation, and inhibition by using a Bayesian network framework. We extend this framework to correctly handle perturbations, and to identify significant subnetworks of interacting genes. We apply this method to expression data of S. cerevisiae mutants and uncover a variety of structured metabolic, signaling and regulatory pathways. Contact: danab@cs.huji.ac.il
Adaptive Probabilistic Networks with Hidden Variables
 Machine Learning
, 1997
"... . Probabilistic networks (also known as Bayesian belief networks) allow a compact description of complex stochastic relationships among several random variables. They are rapidly becoming the tool of choice for uncertain reasoning in artificial intelligence. In this paper, we investigate the problem ..."
Abstract

Cited by 158 (10 self)
 Add to MetaCart
. Probabilistic networks (also known as Bayesian belief networks) allow a compact description of complex stochastic relationships among several random variables. They are rapidly becoming the tool of choice for uncertain reasoning in artificial intelligence. In this paper, we investigate the problem of learning probabilistic networks with known structure and hidden variables. This is an important problem, because structure is much easier to elicit from experts than numbers, and the world is rarely fully observable. We present a gradientbased algorithmand show that the gradient can be computed locally, using information that is available as a byproduct of standard probabilistic network inference algorithms. Our experimental results demonstrate that using prior knowledge about the structure, even with hidden variables, can significantly improve the learning rate of probabilistic networks. We extend the method to networks in which the conditional probability tables are described using a ...
Inferring Parameters and Structure of Latent Variable Models by Variational Bayes
, 1999
"... Current methods for learning graphical models with latent variables and a fixed structure estimate optimal values for the model parameters. Whereas this approach usually produces overfitting and suboptimal generalization performance, carrying out the Bayesian program of computing the full posterior ..."
Abstract

Cited by 136 (1 self)
 Add to MetaCart
Current methods for learning graphical models with latent variables and a fixed structure estimate optimal values for the model parameters. Whereas this approach usually produces overfitting and suboptimal generalization performance, carrying out the Bayesian program of computing the full posterior distributions over the parameters remains a difficult problem. Moreover, learning the structure of models with latent variables, for which the Bayesian approach is crucial, is yet a harder problem. In this paper I present the Variational Bayes framework, which provides a solution to these problems. This approach approximates full posterior distributions over model parameters and structures, as well as latent variables, in an analytical manner without resorting to sampling methods. Unlike in the Laplace approximation, these posteriors are generally nonGaussian and no Hessian needs to be computed. The resulting algorithm generalizes the standard Expectation Maximization a...
Learning Bayesian Networks is NPHard
, 1994
"... Algorithms for learning Bayesian networks from data have two components: a scoring metric and a search procedure. The scoring metric computes a score reflecting the goodnessoffit of the structure to the data. The search procedure tries to identify network structures with high scores. Heckerman et ..."
Abstract

Cited by 130 (2 self)
 Add to MetaCart
Algorithms for learning Bayesian networks from data have two components: a scoring metric and a search procedure. The scoring metric computes a score reflecting the goodnessoffit of the structure to the data. The search procedure tries to identify network structures with high scores. Heckerman et al. (1994) introduced a Bayesian metric, called the BDe metric, that computes the relative posterior probability of a network structure given data. They show that the metric has a property desireable for inferring causal structure from data. In this paper, we show that the problem of deciding whether there is a Bayesian networkamong those where each node has at most k parentsthat has a relative posterior probability greater than a given constant is NPcomplete, when the BDe metric is used. 1 Introduction Recently, many researchers have begun to investigate methods for learning Bayesian networks, including Bayesian methods [Cooper and Herskovits, 1991, Buntine, 1991, York 1992, Spiegel...