Results 1  10
of
131
A fast and stable wellbalanced scheme with hydrostatic reconstruction for shallow water flows
 SIAM J. Sci. Comput
"... Abstract. We consider the SaintVenant system for shallow water flows, with nonflat bottom. It is a hyperbolic system of conservation laws that approximately describes various geophysical flows, such as rivers, coastal areas, and oceans when completed with a Coriolis term, or granular flows when com ..."
Abstract

Cited by 126 (8 self)
 Add to MetaCart
(Show Context)
Abstract. We consider the SaintVenant system for shallow water flows, with nonflat bottom. It is a hyperbolic system of conservation laws that approximately describes various geophysical flows, such as rivers, coastal areas, and oceans when completed with a Coriolis term, or granular flows when completed with friction. Numerical approximate solutions to this system may be generated using conservative finite volume methods, which are known to properly handle shocks and contact discontinuities. However, in general these schemes are known to be quite inaccurate for near steady states, as the structure of their numerical truncation errors is generally not compatible with exact physical steady state conditions. This difficulty can be overcome by using the socalled wellbalanced schemes. We describe a general strategy, based on a local hydrostatic reconstruction, that allows us to derive a wellbalanced scheme from any given numerical flux for the homogeneous problem. Whenever the initial solver satisfies some classical stability properties, it yields a simple and fast wellbalanced scheme that preserves the nonnegativity of the water height and satisfies a semidiscrete entropy inequality.
Balancing Source Terms and Flux Gradients in HighResolution Godunov Methods: The QuasiSteady WavePropogation Algorithm
 J. Comput. Phys
, 1998
"... . Conservation laws with source terms often have steady states in which the flux gradients are nonzero but exactly balanced by source terms. Many numerical methods (e.g., fractional step methods) have difficulty preserving such steady states and cannot accurately calculate small perturbations of suc ..."
Abstract

Cited by 116 (5 self)
 Add to MetaCart
. Conservation laws with source terms often have steady states in which the flux gradients are nonzero but exactly balanced by source terms. Many numerical methods (e.g., fractional step methods) have difficulty preserving such steady states and cannot accurately calculate small perturbations of such states. Here a variant of the wavepropagation algorithm is developed which addresses this problem by introducing a Riemann problem in the center of each grid cell whose flux difference exactly cancels the source term. This leads to modified Riemann problems at the cell edges in which the jump now corresponds to perturbations from the steady state. Computing waves and limiters based on the solution to these Riemann problems gives highresolution results. The 1D and 2D shallow water equations for flow over arbitrary bottom topography are use as an example, though the ideas apply to many other systems. The method is easily implemented in the software package clawpack. Keywords: Godunov meth...
Asymptoticpreserving & wellbalanced schemes for radiative transfer and the Rosseland approximation
, 2003
"... We are concerned with efficient numerical simulation of the radiative transfer equations... ..."
Abstract

Cited by 38 (4 self)
 Add to MetaCart
We are concerned with efficient numerical simulation of the radiative transfer equations...
Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review
, 2010
"... ..."
(Show Context)
Handbook of Numerical Analysis
"... A consistent intermediate wave speed for a wellbalanced HLLC solver ..."
Abstract

Cited by 34 (0 self)
 Add to MetaCart
(Show Context)
A consistent intermediate wave speed for a wellbalanced HLLC solver
High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallowwater systems
 Math. Comp
"... Abstract. This paper is concerned with the development of high order methods for the numerical approximation of onedimensional nonconservative hyperbolic systems. In particular, we are interested in high order extensions of the generalized Roe methods introduced by I. Toumi in 1992, based on WENO r ..."
Abstract

Cited by 22 (4 self)
 Add to MetaCart
(Show Context)
Abstract. This paper is concerned with the development of high order methods for the numerical approximation of onedimensional nonconservative hyperbolic systems. In particular, we are interested in high order extensions of the generalized Roe methods introduced by I. Toumi in 1992, based on WENO reconstruction of states. We also investigate the wellbalanced properties of the resulting schemes. Finally, we will focus on applications to shallowwater systems. 1.
Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation
 J. Comput. Phys
, 2008
"... We present a class of augmented approximate Riemann solvers for the shallow water equations in the presence of a variable bottom surface. These belong to the class of simple approximate solvers that use a set of propagating jump discontinuities, or waves, to approximate the true Riemann solution. Ty ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
(Show Context)
We present a class of augmented approximate Riemann solvers for the shallow water equations in the presence of a variable bottom surface. These belong to the class of simple approximate solvers that use a set of propagating jump discontinuities, or waves, to approximate the true Riemann solution. Typically, a simple solver for a system of m conservation laws uses m such discontinuities. We present a four wave solver for use with the the shallow water equations—a system of two equations in one dimension. The solver is based on a decomposition of an augmented solution vector—the depth, momentum as well as momentum flux and bottom surface. By decomposing these four variables into four waves the solver is endowed with several desirable properties simultaneously. This solver is wellbalanced: it maintains a large class of steady states by the use of a properly defined steady state wave—a stationary jump discontinuity in the Riemann solution that acts as a source term. The form of this wave is introduced and described in detail. The solver also maintains depth nonnegativity and extends naturally to Riemann problems with an initial dry state. These are important properties for applications with steady states and inundation, such as tsunami and flood modeling. Implementing the solver with LeVeque’s wave propagation algorithm [25] is also described. Several numerical simulations are shown, including a test problem for tsunami modeling. Key words: shallow water equations, hyperbolic conservation laws, finite volume methods, Godunov methods, Riemann solvers, wave propagation, shock capturing methods, tsunami modeling
Diffusion Limit Of The Lorentz Model: Asymptotic Preserving Schemes
"... This paper deals with the diusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diusive limit, the right ..."
Abstract

Cited by 19 (2 self)
 Add to MetaCart
(Show Context)
This paper deals with the diusion limit of a kinetic equation where the collisions are modeled by a Lorentz type operator. The main aim is to construct a discrete scheme to approximate this equation which gives for any value of the Knudsen number, and in particular at the diusive limit, the right discrete diusion equation with the same value of the diusion coecient as in the continuous case. We are also naturally interested with a discretization which can be used with few velocity discretization points, in order to reduce the cost of computation.
Localization effects and measure source terms in numerical schemes for balance laws
 Math. Comp
"... Abstract. This paper investigates the behavior of numerical schemes for nonlinear conservation laws with source terms. We concentrate on two significant examples: relaxation approximations and genuinely nonhomogeneous scalar laws. The main tool in our analysis is the extensive use of weak limits and ..."
Abstract

Cited by 18 (5 self)
 Add to MetaCart
(Show Context)
Abstract. This paper investigates the behavior of numerical schemes for nonlinear conservation laws with source terms. We concentrate on two significant examples: relaxation approximations and genuinely nonhomogeneous scalar laws. The main tool in our analysis is the extensive use of weak limits and nonconservative products which allow us to describe accurately the operations achieved in practice when using Riemannbased numerical schemes. Some illustrative and relevant computational results are provided. 1.
Space Localization And WellBalanced Schemes For Discrete Kinetic Models In Diffusive Regimes
 SIAM J. Numer. Anal
, 2002
"... We derive and study WellBalanced schemes for quasimonotone discrete kinetic models. By means of a rigorous localization procedure, we reformulate the collision terms as nonconservative products and solve the resulting Riemann problem whose solution is selfsimilar. The construction of an Asymptotic ..."
Abstract

Cited by 18 (4 self)
 Add to MetaCart
We derive and study WellBalanced schemes for quasimonotone discrete kinetic models. By means of a rigorous localization procedure, we reformulate the collision terms as nonconservative products and solve the resulting Riemann problem whose solution is selfsimilar. The construction of an Asymptotic Preserving (AP) Godunov scheme is straightforward and various compactness properties are established within different scalings. At last, some computational results are supplied to show that this approach is realizable and ecient on concrete 2 &times; 2 models.