Results 1  10
of
67
A fast and stable wellbalanced scheme with hydrostatic reconstruction for shallow water flows
 SIAM J. Sci. Comput
"... Abstract. We consider the SaintVenant system for shallow water flows, with nonflat bottom. It is a hyperbolic system of conservation laws that approximately describes various geophysical flows, such as rivers, coastal areas, and oceans when completed with a Coriolis term, or granular flows when com ..."
Abstract

Cited by 119 (8 self)
 Add to MetaCart
(Show Context)
Abstract. We consider the SaintVenant system for shallow water flows, with nonflat bottom. It is a hyperbolic system of conservation laws that approximately describes various geophysical flows, such as rivers, coastal areas, and oceans when completed with a Coriolis term, or granular flows when completed with friction. Numerical approximate solutions to this system may be generated using conservative finite volume methods, which are known to properly handle shocks and contact discontinuities. However, in general these schemes are known to be quite inaccurate for near steady states, as the structure of their numerical truncation errors is generally not compatible with exact physical steady state conditions. This difficulty can be overcome by using the socalled wellbalanced schemes. We describe a general strategy, based on a local hydrostatic reconstruction, that allows us to derive a wellbalanced scheme from any given numerical flux for the homogeneous problem. Whenever the initial solver satisfies some classical stability properties, it yields a simple and fast wellbalanced scheme that preserves the nonnegativity of the water height and satisfies a semidiscrete entropy inequality.
Wellbalanced finite volume schemes of arbitrary order of accuracy for shallow water flows
, 2006
"... ..."
Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation
 J. Comput. Phys
, 2008
"... We present a class of augmented approximate Riemann solvers for the shallow water equations in the presence of a variable bottom surface. These belong to the class of simple approximate solvers that use a set of propagating jump discontinuities, or waves, to approximate the true Riemann solution. Ty ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
(Show Context)
We present a class of augmented approximate Riemann solvers for the shallow water equations in the presence of a variable bottom surface. These belong to the class of simple approximate solvers that use a set of propagating jump discontinuities, or waves, to approximate the true Riemann solution. Typically, a simple solver for a system of m conservation laws uses m such discontinuities. We present a four wave solver for use with the the shallow water equations—a system of two equations in one dimension. The solver is based on a decomposition of an augmented solution vector—the depth, momentum as well as momentum flux and bottom surface. By decomposing these four variables into four waves the solver is endowed with several desirable properties simultaneously. This solver is wellbalanced: it maintains a large class of steady states by the use of a properly defined steady state wave—a stationary jump discontinuity in the Riemann solution that acts as a source term. The form of this wave is introduced and described in detail. The solver also maintains depth nonnegativity and extends naturally to Riemann problems with an initial dry state. These are important properties for applications with steady states and inundation, such as tsunami and flood modeling. Implementing the solver with LeVeque’s wave propagation algorithm [25] is also described. Several numerical simulations are shown, including a test problem for tsunami modeling. Key words: shallow water equations, hyperbolic conservation laws, finite volume methods, Godunov methods, Riemann solvers, wave propagation, shock capturing methods, tsunami modeling
Central schemes and systems of conservation laws with discontinuous coefficients modeling gravity separation of polydisperse suspensions
, 2004
"... ..."
A new approach of high order wellbalanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms
 Communications in Computational Physics
"... Abstract. Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms. In our earlier work [31–33], we designed high order wellbalanced schemes to a class of hyperbolic systems with separable source terms. In this paper, w ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
(Show Context)
Abstract. Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms. In our earlier work [31–33], we designed high order wellbalanced schemes to a class of hyperbolic systems with separable source terms. In this paper, we present a different approach to the same purpose: designing high order wellbalanced finite volume weighted essentially nonoscillatory (WENO) schemes and RungeKutta discontinuous Galerkin (RKDG) finite element methods. We make the observation that the traditional RKDG methods are capable of maintaining certain steady states exactly, if a small modification on either the initial condition or the flux is provided. The computational cost to obtain such a well balanced RKDG method is basically the same as the traditional RKDG method. The same idea can be applied to the finite volume WENO schemes. We will first describe the algorithms and prove the well balanced property for the shallow water equations, and then show that the result can be generalized to a class of other balance laws. We perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions, the nonoscillatory property for general solutions with discontinuities, and the genuine high
The dynamics of pressureless dust clouds and delta waves
 J. Hyperbolic Differ. Equ
, 1994
"... Abstract. The equations of isothermal gas dynamics are studied in the limit when the sound speed vanishes, giving the socalled pressureless gas equations. The collision of two clouds of dust is modeled with these equations in the case where the clouds have finite extent and are surrounded by vacuum ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
(Show Context)
Abstract. The equations of isothermal gas dynamics are studied in the limit when the sound speed vanishes, giving the socalled pressureless gas equations. The collision of two clouds of dust is modeled with these equations in the case where the clouds have finite extent and are surrounded by vacuum. The delta shock that arises in the initial stage of the collision evolves into a delta rarefactionshock and then into a delta doublerarefaction as first one cloud and then the other is fully accreted into the singularity. A highresolution finite volume method that captures this behavior is also presented and numerical results shown. 1
A Wave Propagation Algorithm for Hyperbolic Systems on Curved Manifolds
"... An extension of the wave propagation algorithm first introduced by LeVeque [J. Comp. Phys. 131, 327353 (1997)] is developed for hyperbolic systems on a general curved manifold. This extension is important in a variety of applications, including the propagation of sound waves on a curved surface, sh ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
An extension of the wave propagation algorithm first introduced by LeVeque [J. Comp. Phys. 131, 327353 (1997)] is developed for hyperbolic systems on a general curved manifold. This extension is important in a variety of applications, including the propagation of sound waves on a curved surface, shallow water flow on the surface of the Earth, shallow water magnetohydrodynamics in the solar tachocline, and relativistic hydrodynamics in the presence of compact objects such as neutron stars and black holes. As is the case for the Cartesian wave propagation algorithm, this new approach is second order accurate for smooth flows and highresolution shockcapturing. The algorithm is formulated such that scalar variables are numerically conserved and vector variables have a geometric source term that is naturally incorporated into a modified Riemann solver. Furthermore, all necessary onedimensional Riemann problems are solved in a locally valid orthonormal basis. This orthonormalization allows one to solve Cartesian Riemann problems that are devoid of geometric terms. The new method is tested via application to the linear wave equation on a curved manifold as well as the shallow water equations on part of a sphere. The proposed algorithm has been implemented in the software package clawpack and is freely available on the web.
Solitary Waves in Layered Nonlinear Media
 SIAM J. Appl. Math
, 2003
"... We study longitudinal elastic strain waves in a onedimensional periodicallylayered medium, alternating between two materials with dierent densities and stressstrain relations. If the impedances are dierent, dispersive eects are seen due to reection at the interfaces. When the stressstrain relati ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
We study longitudinal elastic strain waves in a onedimensional periodicallylayered medium, alternating between two materials with dierent densities and stressstrain relations. If the impedances are dierent, dispersive eects are seen due to reection at the interfaces. When the stressstrain relations are nonlinear, the combination of dispersion and nonlinearity leads to the appearance of solitary waves that interact like solitons. We study the scaling properties of these solitary waves and derive a homogenized system of equations that includes dispersive terms. We show that pseudospectral solutions to these equations agree well with direct solutions of the hyperbolic conservation laws in the layered medium using a highresolution nite volume method. For particular parameters we also show how the layered medium can be related to the Toda lattice, which has discrete soliton solutions.