Results 11  20
of
696
A fast approach for overcomplete sparse decomposition based on smoothed ℓ0 norm
, 2009
"... ..."
(Show Context)
Structured compressed sensing: From theory to applications
 IEEE TRANS. SIGNAL PROCESS
, 2011
"... Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discretetodiscrete measurement architectures using matrices of randomized nature and signal models based on standard ..."
Abstract

Cited by 104 (16 self)
 Add to MetaCart
(Show Context)
Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discretetodiscrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuoustime signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regressionbased approaches
 IEEE J. SEL. TOPICS APPL. EARTH OBSERV. REMOTE SENS
, 2012
"... Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher sp ..."
Abstract

Cited by 103 (34 self)
 Add to MetaCart
(Show Context)
Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, illposed
NonParametric Bayesian Dictionary Learning for Sparse Image Representations
"... Nonparametric Bayesian techniques are considered for learning dictionaries for sparse image representations, with applications in denoising, inpainting and compressive sensing (CS). The beta process is employed as a prior for learning the dictionary, and this nonparametric method naturally infers ..."
Abstract

Cited by 92 (34 self)
 Add to MetaCart
(Show Context)
Nonparametric Bayesian techniques are considered for learning dictionaries for sparse image representations, with applications in denoising, inpainting and compressive sensing (CS). The beta process is employed as a prior for learning the dictionary, and this nonparametric method naturally infers an appropriate dictionary size. The Dirichlet process and a probit stickbreaking process are also considered to exploit structure within an image. The proposed method can learn a sparse dictionary in situ; training images may be exploited if available, but they are not required. Further, the noise variance need not be known, and can be nonstationary. Another virtue of the proposed method is that sequential inference can be readily employed, thereby allowing scaling to large images. Several example results are presented, using both Gibbs and variational Bayesian inference, with comparisons to other stateoftheart approaches.
Exploiting structure in waveletbased Bayesian compressive sensing
, 2009
"... Bayesian compressive sensing (CS) is considered for signals and images that are sparse in a wavelet basis. The statistical structure of the wavelet coefficients is exploited explicitly in the proposed model, and therefore this framework goes beyond simply assuming that the data are compressible in a ..."
Abstract

Cited by 91 (14 self)
 Add to MetaCart
(Show Context)
Bayesian compressive sensing (CS) is considered for signals and images that are sparse in a wavelet basis. The statistical structure of the wavelet coefficients is exploited explicitly in the proposed model, and therefore this framework goes beyond simply assuming that the data are compressible in a wavelet basis. The structure exploited within the wavelet coefficients is consistent with that used in waveletbased compression algorithms. A hierarchical Bayesian model is constituted, with efficient inference via Markov chain Monte Carlo (MCMC) sampling. The algorithm is fully developed and demonstrated using several natural images, with performance comparisons to many stateoftheart compressivesensing inversion algorithms.
Sensitivity to basis mismatch of compressed sensing,” preprint
, 2009
"... Abstract—The theory of compressed sensing suggests that successful inversion of an image of the physical world (e.g., a radar/sonar return or a sensor array snapshot vector) for the source modes and amplitudes can be achieved at measurement dimensions far lower than what might be expected from the c ..."
Abstract

Cited by 86 (8 self)
 Add to MetaCart
(Show Context)
Abstract—The theory of compressed sensing suggests that successful inversion of an image of the physical world (e.g., a radar/sonar return or a sensor array snapshot vector) for the source modes and amplitudes can be achieved at measurement dimensions far lower than what might be expected from the classical theories of spectrum or modal analysis, provided that the image is sparse in an apriori known basis. For imaging problems in passive and active radar and sonar, this basis is usually taken to be a DFT basis. The compressed sensing measurements are then inverted using an ℓ1minimization principle (basis pursuit) for the nonzero source amplitudes. This seems to make compressed sensing an ideal image inversion principle for high resolution modal analysis. However, in reality no physical field is sparse in the DFT basis or in an apriori known basis. In fact the main goal in image inversion is to identify the modal structure. No matter how finely we grid the parameter space the sources may not lie in the center of the grid cells and there is always mismatch between the assumed and the actual bases for sparsity. In this paper, we study the sensitivity of basis pursuit to mismatch between the assumed and the actual sparsity bases and compare the performance of basis pursuit with that of classical image inversion. Our mathematical analysis and numerical examples show that the performance of basis pursuit degrades considerably in the presence of mismatch, and they suggest that the use of compressed sensing as a modal analysis principle requires more consideration and refinement, at least for the problem sizes common to radar/sonar. I.
Proximal Methods for Hierarchical Sparse Coding
, 2010
"... Sparse coding consists in representing signals as sparse linear combinations of atoms selected from a dictionary. We consider an extension of this framework where the atoms are further assumed to be embedded in a tree. This is achieved using a recently introduced treestructured sparse regularizatio ..."
Abstract

Cited by 83 (18 self)
 Add to MetaCart
(Show Context)
Sparse coding consists in representing signals as sparse linear combinations of atoms selected from a dictionary. We consider an extension of this framework where the atoms are further assumed to be embedded in a tree. This is achieved using a recently introduced treestructured sparse regularization norm, which has proven useful in several applications. This norm leads to regularized problems that are difficult to optimize, and we propose in this paper efficient algorithms for solving them. More precisely, we show that the proximal operator associated with this norm is computable exactly via a dual approach that can be viewed as the composition of elementary proximal operators. Our procedure has a complexity linear, or close to linear, in the number of atoms, and allows the use of accelerated gradient techniques to solve the treestructured sparse approximation problem at the same computational cost as traditional ones using the ℓ1norm. Our method is efficient and scales gracefully to millions of variables, which we illustrate in two types of applications: first, we consider fixed hierarchical dictionaries of wavelets to denoise natural images. Then, we apply our optimization tools in the context of dictionary learning, where learned dictionary elements naturally organize in a prespecified arborescent structure, leading to a better performance in reconstruction of natural image patches. When applied to text documents, our method learns hierarchies of topics, thus providing a competitive alternative to probabilistic topic models.
Compressive data gathering for largescale wireless sensor networks
 in Proc. ACM Mobicom’09
, 2009
"... This paper presents the first complete design to apply compressive sampling theory to sensor data gathering for largescale wireless sensor networks. The successful scheme developed in this research is expected to offer fresh frame of mind for research in both compressive sampling applications and la ..."
Abstract

Cited by 76 (4 self)
 Add to MetaCart
(Show Context)
This paper presents the first complete design to apply compressive sampling theory to sensor data gathering for largescale wireless sensor networks. The successful scheme developed in this research is expected to offer fresh frame of mind for research in both compressive sampling applications and largescale wireless sensor networks. We consider the scenario in which a large number of sensor nodes are densely deployed and sensor readings are spatially correlated. The proposed compressive data gathering is able to reduce global scale communication cost without introducing intensive computation or complicated transmission control. The load balancing characteristic is capable of extending the lifetime of the entire sensor network as well as individual sensors. Furthermore, the proposed scheme can cope with abnormal sensor readings gracefully. We also carry out the analysis of the network capacity of the proposed compressive data gathering and validate the analysis through ns2 simulations. More importantly, this novel compressive data gathering has been tested on real sensor data and the results show the efficiency and robustness of the proposed scheme.
Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication: From Subspace Methods to Compressed Sensing
"... Abstract—In this paper, we present various channel estimators that exploit the channel sparsity in a multicarrier underwater acoustic system, including subspace algorithms from the array precessing literature, namely rootMUSIC and ESPRIT, and recent compressed sensing algorithms in form of Orthogon ..."
Abstract

Cited by 73 (33 self)
 Add to MetaCart
(Show Context)
Abstract—In this paper, we present various channel estimators that exploit the channel sparsity in a multicarrier underwater acoustic system, including subspace algorithms from the array precessing literature, namely rootMUSIC and ESPRIT, and recent compressed sensing algorithms in form of Orthogonal Matching Pursuit (OMP) and Basis Pursuit (BP). Numerical simulation and experimental data of an OFDM blockbyblock receiver are used to evaluate the proposed algorithms in comparison to the conventional leastsquares (LS) channel estimator. We observe that subspace methods can tolerate small to moderate Doppler effects, and outperform the LS approach when the channel is indeed sparse. On the other hand, compressed sensing algorithms uniformly outperform the LS and subspace methods. Coupled with a channel equalizer mitigating intercarrier interference, the compressed sensing algorithms can handle channels with significant Doppler spread.
Structured Sparse Principal Component Analysis
, 2009
"... We present an extension of sparse PCA, or sparse dictionary learning, where the sparsity patterns of all dictionary elements are structured and constrained to belong to a prespecified set of shapes. This structured sparse PCA is based on a structured regularization recently introduced by [1]. While ..."
Abstract

Cited by 70 (14 self)
 Add to MetaCart
(Show Context)
We present an extension of sparse PCA, or sparse dictionary learning, where the sparsity patterns of all dictionary elements are structured and constrained to belong to a prespecified set of shapes. This structured sparse PCA is based on a structured regularization recently introduced by [1]. While classical sparse priors only deal with cardinality, the regularization we use encodes higherorder information about the data. We propose an efficient and simple optimization procedure to solve this problem. Experiments with two practical tasks, face recognition and the study of the dynamics of a protein complex, demonstrate the benefits of the proposed structured approach over unstructured approaches. 1