Results 1 
2 of
2
WORKING WITH STRONG REDUCIBILITIES ABOVE TOTALLY ωC.E. DEGREES
"... Abstract. We investigate the connections between the complexity of a c.e. set, as calibrated by its strength as an oracle for Turing computations of functions in the Ershov hierarchy, and how strong reducibilities allows us to compute such sets. For example, we prove that a c.e. degree is totally ω ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
Abstract. We investigate the connections between the complexity of a c.e. set, as calibrated by its strength as an oracle for Turing computations of functions in the Ershov hierarchy, and how strong reducibilities allows us to compute such sets. For example, we prove that a c.e. degree is totally ωc.e. iff every set in it is weak truthtable reducible to a hypersimple, or ranked, set. We also show that a c.e. degree is array computable iff every leftc.e. real of that degree is reducible in a computable Lipschitz way to a random leftc.e. real (an Ωnumber). 1.
Reverse Mathematics: The Playground of Logic
, 2010
"... The general enterprise of calibrating the strength of classical mathematical theorems in terms of the axioms (typically of set existence) needed to prove them was begun by Harvey Friedman in [1971] (see also [1967]). His goals were both philosophical and foundational. What existence assumptions are ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
The general enterprise of calibrating the strength of classical mathematical theorems in terms of the axioms (typically of set existence) needed to prove them was begun by Harvey Friedman in [1971] (see also [1967]). His goals were both philosophical and foundational. What existence assumptions are really needed to develop classical mathematics