Results 1  10
of
194
The linkprediction problem for social networks
 J. American Society for Information Science and Technology
"... Given a snapshot of a social network, can we infer which new interactions among its members are likely to occur in the near future? We formalize this question as the linkprediction problem, and we develop approaches to link prediction based on measures for analyzing the “proximity” of nodes in a ne ..."
Abstract

Cited by 478 (5 self)
 Add to MetaCart
Given a snapshot of a social network, can we infer which new interactions among its members are likely to occur in the near future? We formalize this question as the linkprediction problem, and we develop approaches to link prediction based on measures for analyzing the “proximity” of nodes in a network. Experiments on large coauthorship networks suggest that information about future interactions can be extracted from network topology alone, and that fairly subtle measures for detecting node proximity can outperform more direct measures. 1
Scaling Personalized Web Search
 In Proceedings of the Twelfth International World Wide Web Conference
, 2002
"... Recent web search techniques augment traditional text matching with a global notion of "importance" based on the linkage structure of the web, such as in Google's PageRank algorithm. For more refined searches, this global notion of importance can be specialized to create personalized views of import ..."
Abstract

Cited by 294 (3 self)
 Add to MetaCart
Recent web search techniques augment traditional text matching with a global notion of "importance" based on the linkage structure of the web, such as in Google's PageRank algorithm. For more refined searches, this global notion of importance can be specialized to create personalized views of importance  for example, importance scores can be biased according to a userspecified set of initially interesting pages. Computing and storing all possible personalized views in advance is impractical, as is computing personalized views at query time, since the computation of each view requires an iterative computation over the web graph. We present new graphtheoretical results, and a new technique based on these results, that encode personalized views as partial vectors. Partial vectors are shared across multiple personalized views, and their computation and storage costs scale well with the number of views.
Fast random walk with restart and its applications
 In ICDM ’06: Proceedings of the 6th IEEE International Conference on Data Mining
, 2006
"... How closely related are two nodes in a graph? How to compute this score quickly, on huge, diskresident, real graphs? Random walk with restart (RWR) provides a good relevance score between two nodes in a weighted graph, and it has been successfully used in numerous settings, like automatic captionin ..."
Abstract

Cited by 96 (15 self)
 Add to MetaCart
How closely related are two nodes in a graph? How to compute this score quickly, on huge, diskresident, real graphs? Random walk with restart (RWR) provides a good relevance score between two nodes in a weighted graph, and it has been successfully used in numerous settings, like automatic captioning of images, generalizations to the “connection subgraphs”, personalized PageRank, and many more. However, the straightforward implementations of RWR do not scale for large graphs, requiring either quadratic space and cubic precomputation time, or slow response time on queries. We propose fast solutions to this problem. The heart of our approach is to exploit two important properties shared by many real graphs: (a) linear correlations and (b) blockwise, communitylike structure. We exploit the linearity by using lowrank matrix approximation, and the community structure by graph partitioning, followed by the ShermanMorrison lemma for matrix inversion. Experimental results on the Corel image and the DBLP dabasets demonstrate that our proposed methods achieve significant savings over the straightforward implementations: they can save several orders of magnitude in precomputation and storage cost, and they achieve up to 150x speed up with 90%+ quality preservation. 1
Truth discovery with multiple conflicting information providers on the web
 In Proc. 2007 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD’07
, 2007
"... The worldwide web has become the most important information source for most of us. Unfortunately, there is no guarantee for the correctness of information on the web. Moreover, different web sites often provide conflicting information on a subject, such as different specifications for the same prod ..."
Abstract

Cited by 66 (19 self)
 Add to MetaCart
The worldwide web has become the most important information source for most of us. Unfortunately, there is no guarantee for the correctness of information on the web. Moreover, different web sites often provide conflicting information on a subject, such as different specifications for the same product. In this paper we propose a new problem called Veracity, i.e., conformity to truth, which studies how to find true facts from a large amount of conflicting information on many subjects that is provided by various web sites. We design a general framework for the Veracity problem, and invent an algorithm called TruthFinder, which utilizes the relationships between web sites and their information, i.e., a web site is trustworthy if it provides many pieces of true information, and a piece of information is likely to be true if it is provided by many trustworthy web sites. Our experiments show that TruthFinder successfully finds true facts among conflicting information, and identifies trustworthy web sites better than the popular search engines.
A survey on pagerank computing
 Internet Mathematics
, 2005
"... Abstract. This survey reviews the research related to PageRank computing. Components of a PageRank vector serve as authority weights for web pages independent of their textual content, solely based on the hyperlink structure of the web. PageRank is typically used as a web search ranking component. T ..."
Abstract

Cited by 64 (0 self)
 Add to MetaCart
Abstract. This survey reviews the research related to PageRank computing. Components of a PageRank vector serve as authority weights for web pages independent of their textual content, solely based on the hyperlink structure of the web. PageRank is typically used as a web search ranking component. This defines the importance of the model and the data structures that underly PageRank processing. Computing even a single PageRank is a difficult computational task. Computing many PageRanks is a much more complex challenge. Recently, significant effort has been invested in building sets of personalized PageRank vectors. PageRank is also used in many diverse applications other than ranking. We are interested in the theoretical foundations of the PageRank formulation, in the acceleration of PageRank computing, in the effects of particular aspects of web graph structure on the optimal organization of computations, and in PageRank stability. We also review alternative models that lead to authority indices similar to PageRank and the role of such indices in applications other than web search. We also discuss linkbased search personalization and outline some aspects of PageRank infrastructure from associated measures of convergence to link preprocessing. 1.
Exploiting Hierarchical Domain Structure to Compute Similarity
 ACM TRANSACTIONS ON INFORMATION SYSTEMS
, 2003
"... ..."
A measure of similarity between graph vertices: Applications to synonym extraction and web searching
 SIAM Rev
, 2004
"... Abstract. We introduce a concept of similarity between vertices of directed graphs. Let GA and GB be two directed graphs with respectively nA and nB vertices. We define a nB × nA similarity matrix S whose real entry sij expresses how similar vertex j (in GA) is to vertex i (in GB) : we say that sij ..."
Abstract

Cited by 61 (3 self)
 Add to MetaCart
Abstract. We introduce a concept of similarity between vertices of directed graphs. Let GA and GB be two directed graphs with respectively nA and nB vertices. We define a nB × nA similarity matrix S whose real entry sij expresses how similar vertex j (in GA) is to vertex i (in GB) : we say that sij is their similarity score. The similarity matrix can be obtained as the limit of the normalized even iterates of S(k+1) = BS(k)A T +B T S(k)A where A and B are adjacency matrices of the graphs and S(0) is a matrix whose entries are all equal to one. In the special case where GA = GB = G, the matrix S is square and the score sij is the similarity score between the vertices i and j of G. We point out that Kleinberg’s “hub and authority ” method to identify webpages relevant to a given query can be viewed as a special case of our definition in the case where one of the graphs has two vertices and a unique directed edge between them. In analogy to Kleinberg, we show that our similarity scores are given by the components of a dominant eigenvector of a nonnegative matrix. Potential applications of our similarity concept are numerous. We illustrate an application for the automatic extraction of synonyms in a monolingual dictionary. Key words. Algorithms, graph algorithms, graph theory, eigenvalues of graphs AMS subject classifications. 05C50, 05C85, 15A18, 68R10
Centerpiece subgraphs: Problem definition and fast solutions
 In KDD
, 2006
"... Given Q nodes in a social network (say, authorship network), how can we find the node/author that is the centerpiece, and has direct or indirect connections to all, or most of them? For example, this node could be the common advisor, or someone who started the research area that the Q nodes belong t ..."
Abstract

Cited by 52 (17 self)
 Add to MetaCart
Given Q nodes in a social network (say, authorship network), how can we find the node/author that is the centerpiece, and has direct or indirect connections to all, or most of them? For example, this node could be the common advisor, or someone who started the research area that the Q nodes belong to. Isomorphic scenarios appear in law enforcement (find the mastermind criminal, connected to all current suspects), gene regulatory networks (find the protein that participates in pathways with all or most of the given Q proteins), viral marketing and many more. Connection subgraphs is an important first step, handling the case of Q=2 query nodes. Then, the connection subgraph algorithm finds the b intermediate nodes, that provide a good connection between the two original query nodes. Here we generalize the challenge in multiple dimensions: First, we allow more than two query nodes. Second, we allow a whole family of queries, ranging from ’OR ’ to ’AND’, with ’softAND ’ inbetween. Finally, we design and compare a fast approximation, and study the quality/speed tradeoff. We also present experiments on the DBLP dataset. The experiments confirm that our proposed method naturally deals with multisource queries and that the resulting subgraphs agree with our intuition. Wallclock timing results on the DBLP dataset show that our proposed approximation achieve good accuracy for about 6: 1 speedup. This material is based upon work supported by the
Link Mining: A Survey
 SigKDD Explorations Special Issue on Link Mining
, 2005
"... Many datasets of interest today are best described as a linked collection of interrelated objects. These may represent homogeneous networks, in which there is a singleobject type and link type, or richer, heterogeneous networks, in which there may be multiple object and link types (and possibly oth ..."
Abstract

Cited by 47 (0 self)
 Add to MetaCart
Many datasets of interest today are best described as a linked collection of interrelated objects. These may represent homogeneous networks, in which there is a singleobject type and link type, or richer, heterogeneous networks, in which there may be multiple object and link types (and possibly other semantic information). Examples of homogeneous networks include single mode social networks, such as people connected by friendship links, or the WWW, a collection of linked web pages. Examples of heterogeneous networks include those in medical domains describing patients, diseases, treatments and contacts, or in bibliographic domains describing publications, authors, and venues. Link mining refers to data mining techniques that explicitly consider these links when building predictive or descriptive models of the linked data. Commonly addressed link mining tasks include object ranking, group detection, collective classification, link prediction and subgraph discovery. While network analysis has been studied in depth in particular areas such as social network analysis, hypertext mining, and web analysis, only recently has there been a crossfertilization of ideas among these different communities. This is an exciting, rapidly expanding area. In this article, we review some of the common emerging themes. 1.
Rankingbased clustering of heterogeneous information networks with star network schema
 In: Proc. 2009 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2009
, 2009
"... A heterogeneous information network is an information network composed of multiple types of objects. Clustering on such a network may lead to better understanding of both hidden structures of the network and the individual role played by every object in each cluster. However, although clustering on ..."
Abstract

Cited by 44 (24 self)
 Add to MetaCart
A heterogeneous information network is an information network composed of multiple types of objects. Clustering on such a network may lead to better understanding of both hidden structures of the network and the individual role played by every object in each cluster. However, although clustering on homogeneous networks has been studied over decades, clustering on heterogeneous networks has not been addressed until recently. A recent study proposed a new algorithm, RankClus, for clustering on bityped heterogeneous networks. However, a realworld network may consist of more than two types, and the interactions among multityped objects play a key role at disclosing the rich semantics that a network carries. In this paper, we study clustering of multityped heterogeneous networks with a star network schema and propose a novel algorithm, NetClus, that utilizes links across multityped objects to generate highquality netclusters. An iterative enhancement method is developed that leads to effective rankingbased clustering in such heterogeneous networks. Our experiments on DBLP data show that NetClus generates more accurate clustering results than the baseline topic model algorithm PLSA and the recently proposed algorithm, RankClus. Further, NetClus generates informative clusters, presenting good ranking and cluster membership information for each attribute object in each netcluster.