Results 1 
4 of
4
Improved Boosting Algorithms Using Confidencerated Predictions
 MACHINE LEARNING
, 1999
"... We describe several improvements to Freund and Schapire’s AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find impr ..."
Abstract

Cited by 861 (27 self)
 Add to MetaCart
We describe several improvements to Freund and Schapire’s AdaBoost boosting algorithm, particularly in a setting in which hypotheses may assign confidences to each of their predictions. We give a simplified analysis of AdaBoost in this setting, and we show how this analysis can be used to find improved parameter settings as well as a refined criterion for training weak hypotheses. We give a specific method for assigning confidences to the predictions of decision trees, a method closely related to one used by Quinlan. This method also suggests a technique for growing decision trees which turns out to be identical to one proposed by Kearns and Mansour. We focus next on how to apply the new boosting algorithms to multiclass classification problems, particularly to the multilabel case in which each example may belong to more than one class. We give two boosting methods for this problem, plus a third method based on output coding. One of these leads to a new method for handling the singlelabel case which is simpler but as effective as techniques suggested by Freund and Schapire. Finally, we give some experimental results comparing a few of the algorithms discussed in this paper.
Stochastic Refinement of the Visual Hull to Satisfy Photometric and Silhouette Consistency Constraints
, 2003
"... An iterative method for reconstructing a 3D polygonal mesh and color texture map from multiple views of an object is presented. In each iteration, the method first estimates a texture map given the current shape estimate. The texture map and its associated residual error image are obtained via maxim ..."
Abstract

Cited by 33 (1 self)
 Add to MetaCart
(Show Context)
An iterative method for reconstructing a 3D polygonal mesh and color texture map from multiple views of an object is presented. In each iteration, the method first estimates a texture map given the current shape estimate. The texture map and its associated residual error image are obtained via maximum a posteriori estimation and reprojection of the multiple views into texture space. Next, the surface shape is adjusted to minimize residual error in texture space. The surface is deformed towards a photometricallyconsistent solution via a series of 1D epipolar searches at randomly selected surface points. The texture space formulation has improved computational complexity over standard imagebased error aproaches, and allows computation of the reprojection error and uncertainty for any point on the surface. Moreover, shape adjustments can be constrained such that the recovered model's silhouette matches those of the input images. Experiments with real world imagery demonstrate the validity of the approach.
Multiclass learning by probabilistic embeddings
 In Advances in Neural Information Processing Systems 15
, 2002
"... We describe a new algorithmic framework for learning multiclass categorization problems. In this framework a multiclass predictor is composed of a pair of embeddings that map both instances and labels into a common space. In this space each instance is assigned the label it is nearest to. We outlin ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
(Show Context)
We describe a new algorithmic framework for learning multiclass categorization problems. In this framework a multiclass predictor is composed of a pair of embeddings that map both instances and labels into a common space. In this space each instance is assigned the label it is nearest to. We outline and analyze an algorithm, termed Bunching, for learning the pair of embeddings from labeled data. A key construction in the analysis of the algorithm is the notion of probabilistic output codes, a generalization of error correcting output codes (ECOC). Furthermore, the method of multiclass categorization using ECOC is shown to be an instance of Bunching. We demonstrate the advantage of Bunching over ECOC by comparing their performance on numerous categorization problems. 1
Stochastic Refinement of the Visual Hull to Satisfy Photometric and Silhouette Consistency Constraints
"... An iterative method for reconstructing a 3D polygonal mesh and color texture map from multiple views of an object is presented. In each iteration, the method first estimates a texture map given the current shape estimate. The texture map and its associated residual error image are obtained via maxim ..."
Abstract
 Add to MetaCart
(Show Context)
An iterative method for reconstructing a 3D polygonal mesh and color texture map from multiple views of an object is presented. In each iteration, the method first estimates a texture map given the current shape estimate. The texture map and its associated residual error image are obtained via maximum a posteriori estimation and reprojection of the multiple views into texture space. Next, the surface shape is adjusted to minimize residual error in texture space. The surface is deformed towards a photometricallyconsistent solution via a series of 1D epipolar searches at randomly selected surface points. The texture space formulation has improved computational complexity over standard imagebased error aproaches, and allows computation of the reprojection error and uncertainty for any point on the surface. Moreover, shape adjustments can be constrained such that the recovered model’s silhouette matches those of the input images. Experiments with real world imagery demonstrate the validity of the approach. 1.