Results 1 
1 of
1
Solving Polynomial Systems Using a Branch and Prune Approach
 SIAM Journal on Numerical Analysis
, 1997
"... This paper presents Newton, a branch & prune algorithm to find all isolated solutions of a system of polynomial constraints. Newton can be characterized as a global search method which uses intervals for numerical correctness and for pruning the search space early. The pruning in Newton consists in ..."
Abstract

Cited by 101 (7 self)
 Add to MetaCart
This paper presents Newton, a branch & prune algorithm to find all isolated solutions of a system of polynomial constraints. Newton can be characterized as a global search method which uses intervals for numerical correctness and for pruning the search space early. The pruning in Newton consists in enforcing at each node of the search tree a unique local consistency condition, called boxconsistency, which approximates the notion of arcconsistency wellknown in artificial intelligence. Boxconsistency is parametrized by an interval extension of the constraint and can be instantiated to produce the HansenSegupta's narrowing operator (used in interval methods) as well as new operators which are more effective when the computation is far from a solution. Newton has been evaluated on a variety of benchmarks from kinematics, chemistry, combustion, economics, and mechanics. On these benchmarks, it outperforms the interval methods we are aware of and compares well with stateoftheart continuation methods. Limitations of Newton (e.g., a sensitivity to the size of the initial intervals on some problems) are also discussed. Of particular interest is the mathematical and programming simplicity of the method.