Results 1  10
of
17
Probabilistic checking of proofs: a new characterization of NP
 Journal of the ACM
, 1998
"... Abstract. We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from ..."
Abstract

Cited by 365 (28 self)
 Add to MetaCart
Abstract. We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof. We discuss implications of this characterization; specifically, we show that approximating Clique and Independent Set, even in a very weak sense, is NPhard.
Algebraic Methods for Interactive Proof Systems
, 1990
"... We present a new algebraic technique for the construction of interactive proof systems. We use our technique to prove that every language in the polynomialtime hierarchy has an interactive proof system. This technique played a pivotal role in the recent proofs that IP=PSPACE (Shamir) and that MIP ..."
Abstract

Cited by 305 (29 self)
 Add to MetaCart
We present a new algebraic technique for the construction of interactive proof systems. We use our technique to prove that every language in the polynomialtime hierarchy has an interactive proof system. This technique played a pivotal role in the recent proofs that IP=PSPACE (Shamir) and that MIP=NEXP (Babai, Fortnow and Lund).
The Isomorphism Conjecture Fails Relative to a Random Oracle
 J. ACM
, 1996
"... Berman and Hartmanis [BH77] conjectured that there is a polynomialtime computable isomorphism between any two languages complete for NP with respect to polynomialtime computable manyone (Karp) reductions. Joseph and Young [JY85] gave a structural definition of a class of NPcomplete setsthe kc ..."
Abstract

Cited by 40 (4 self)
 Add to MetaCart
Berman and Hartmanis [BH77] conjectured that there is a polynomialtime computable isomorphism between any two languages complete for NP with respect to polynomialtime computable manyone (Karp) reductions. Joseph and Young [JY85] gave a structural definition of a class of NPcomplete setsthe kcreative setsand defined a class of sets (the K k f 's) that are necessarily kcreative. They went on to conjecture that certain of these K k f 's are not isomorphic to the standard NPcomplete sets. Clearly, the BermanHartmanis and JosephYoung conjectures cannot both be correct. We introduce a family of strong oneway functions, the scrambling functions. If f is a scrambling function, then K k f is not isomorphic to the standard NPcomplete sets, as Joseph and Young conjectured, and the BermanHartmanis conjecture fails. Indeed, if scrambling functions exist, then the isomorphism also fails at higher complexity classes such as EXP and NEXP. As evidence for the existence of scramb...
The Role of Relativization in Complexity Theory
 Bulletin of the European Association for Theoretical Computer Science
, 1994
"... Several recent nonrelativizing results in the area of interactive proofs have caused many people to review the importance of relativization. In this paper we take a look at how complexity theorists use and misuse oracle results. We pay special attention to the new interactive proof systems and progr ..."
Abstract

Cited by 40 (9 self)
 Add to MetaCart
Several recent nonrelativizing results in the area of interactive proofs have caused many people to review the importance of relativization. In this paper we take a look at how complexity theorists use and misuse oracle results. We pay special attention to the new interactive proof systems and program checking results and try to understand why they do not relativize. We give some new results that may help us to understand these questions better.
Randomness, Interactive Proofs and . . .
 APPEARS IN THE UNIVERSAL TURING MACHINE: A HALFCENTURY SURVEY, R. HERKEN ED.
, 1987
"... Recent approaches to the notions of randomness and proofs are surveyed. The new notions differ from the traditional ones in being subjective to the capabilities of the observer rather than reflecting "ideal " entities. The new notion of randomness regards probability distributions as equal if they c ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
Recent approaches to the notions of randomness and proofs are surveyed. The new notions differ from the traditional ones in being subjective to the capabilities of the observer rather than reflecting "ideal " entities. The new notion of randomness regards probability distributions as equal if they cannot be told apart by efficient procedures. This notion is constructive and is suited for many applications. The new notion of a proof allows the introduction of the notion of zeroknowledge proofs: convincing arguments which yield nothing but the validity of the assertion. The new approaches to randomness and proofs are based on basic concepts and results from the theory of resourcebounded computation. In order to make the survey as accessible as possible, we have presented elements of the theory of resource bounded computation (but only to the extent required for the description of the new approaches). This survey is not intended to provide an account of the more traditional approaches to randomness (e.g. Kolmogorov Complexity) and proofs (i.e. traditional logic systems). Whenever these approaches are described it is only in order to confront them with the new approaches.
Counting Hierarchies: Polynomial Time And Constant Depth Circuits
, 1990
"... In the spring of 1989, Seinosuke Toda of the University of ElectroCommunications in Tokyo, Japan, proved that the polynomial hierarchy is contained in P PP [To89]. In this Structural Complexity Column, we will briefly review Toda's result, and explore how it relates to other topics of interest i ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
In the spring of 1989, Seinosuke Toda of the University of ElectroCommunications in Tokyo, Japan, proved that the polynomial hierarchy is contained in P PP [To89]. In this Structural Complexity Column, we will briefly review Toda's result, and explore how it relates to other topics of interest in computer science. In particular, we will introduce the reader to The Counting Hierarchy: a hierarchy of complexity classes contained in PSPACE and containing the Polynomial Hierarchy. Threshold Circuits: circuits constructed of MAJORITY gates; this notion of circuit is being studied not only by complexity theoreticians, but also by researchers in an active subfield of AI studying "neural networks". Along the way, we'll review the important notion of an operator on a complexity class. 1. The Counting Hierarchy, and Operators on Complexity Classes The counting hierarchy was defined in [Wa86] and independently by Parberry and Schnitger in [PS88]. (The motivation for [Wa86] was the desir...
Relative to a random oracle, NP is not small
 In Proc. 9th Structures
, 1994
"... Resourcebounded measure as originated by Lutz is an extension of classical measure theory which provides a probabilistic means of describing the relative sizes of complexity classes. Lutz has proposed the hypothesis that NP does not have pmeasure zero, meaning loosely that NP contains a nonneglig ..."
Abstract

Cited by 18 (1 self)
 Add to MetaCart
Resourcebounded measure as originated by Lutz is an extension of classical measure theory which provides a probabilistic means of describing the relative sizes of complexity classes. Lutz has proposed the hypothesis that NP does not have pmeasure zero, meaning loosely that NP contains a nonnegligible subset of exponential time. This hypothesis implies a strong separation of P from NP and is supported by a growing body of plausible consequences which are not known to follow from the weaker assertion P ̸ = NP. It is shown in this paper that relative to a random oracle, NP does not have pmeasure zero. The proof exploits the following independence property of algorithmically random sequences: if A is an algorithmically random sequence and a subsequence A0 is chosen by means of a bounded KolmogorovLoveland
Applications of TimeBounded Kolmogorov Complexity in Complexity Theory
 Kolmogorov complexity and computational complexity
, 1992
"... This paper presents one method of using timebounded Kolmogorov complexity as a measure of the complexity of sets, and outlines anumber of applications of this approach to di#erent questions in complexity theory. Connections will be drawn among the following topics: NE predicates, ranking functi ..."
Abstract

Cited by 18 (4 self)
 Add to MetaCart
This paper presents one method of using timebounded Kolmogorov complexity as a measure of the complexity of sets, and outlines anumber of applications of this approach to di#erent questions in complexity theory. Connections will be drawn among the following topics: NE predicates, ranking functions, pseudorandom generators, and hierarchy theorems in circuit complexity.
A Taxonomy of Proof Systems
 BASIC RESEARCH IN COMPUTER SCIENCE, CENTER OF THE DANISH NATIONAL RESEARCH FOUNDATION
, 1997
"... Several alternative formulations of the concept of an efficient proof system are nowadays coexisting in our field. These systems include the classical formulation of NP , interactive proof systems (giving rise to the class IP), computationallysound proof systems, and probabilistically checkable pro ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
Several alternative formulations of the concept of an efficient proof system are nowadays coexisting in our field. These systems include the classical formulation of NP , interactive proof systems (giving rise to the class IP), computationallysound proof systems, and probabilistically checkable proofs (PCP), which are closely related to multiprover interactive proofs (MIP). Although these notions are sometimes introduced using the same generic phrases, they are actually very different in motivation, applications and expressive power. The main objective of this essay is to try to clarify these differences.
Algorithmic randomness, quantum physics, and incompleteness
 PROCEEDINGS OF THE CONFERENCE “MACHINES, COMPUTATIONS AND UNIVERSALITY” (MCU’2004), LECTURES NOTES IN COMPUT. SCI. 3354
, 2004
"... ..."