Results 1  10
of
185
Exact Matrix Completion via Convex Optimization
, 2008
"... We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfe ..."
Abstract

Cited by 863 (27 self)
 Add to MetaCart
We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfectly recover most lowrank matrices from what appears to be an incomplete set of entries. We prove that if the number m of sampled entries obeys m ≥ C n 1.2 r log n for some positive numerical constant C, then with very high probability, most n × n matrices of rank r can be perfectly recovered by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold for arbitrary rectangular matrices as well. Our results are connected with the recent literature on compressed sensing, and show that objects other than signals and images can be perfectly reconstructed from very limited information.
Sparsity and Incoherence in Compressive Sampling
, 2006
"... We consider the problem of reconstructing a sparse signal x 0 ∈ R n from a limited number of linear measurements. Given m randomly selected samples of Ux 0, where U is an orthonormal matrix, we show that ℓ1 minimization recovers x 0 exactly when the number of measurements exceeds m ≥ Const · µ 2 (U) ..."
Abstract

Cited by 239 (14 self)
 Add to MetaCart
We consider the problem of reconstructing a sparse signal x 0 ∈ R n from a limited number of linear measurements. Given m randomly selected samples of Ux 0, where U is an orthonormal matrix, we show that ℓ1 minimization recovers x 0 exactly when the number of measurements exceeds m ≥ Const · µ 2 (U) · S · log n, where S is the number of nonzero components in x 0, and µ is the largest entry in U properly normalized: µ(U) = √ n · maxk,j Uk,j. The smaller µ, the fewer samples needed. The result holds for “most ” sparse signals x 0 supported on a fixed (but arbitrary) set T. Given T, if the sign of x 0 for each nonzero entry on T and the observed values of Ux 0 are drawn at random, the signal is recovered with overwhelming probability. Moreover, there is a sense in which this is nearly optimal since any method succeeding with the same probability would require just about this many samples.
Empirical margin distributions and bounding the generalization error of combined classifiers
 Ann. Statist
, 2002
"... Dedicated to A.V. Skorohod on his seventieth birthday We prove new probabilistic upper bounds on generalization error of complex classifiers that are combinations of simple classifiers. Such combinations could be implemented by neural networks or by voting methods of combining the classifiers, such ..."
Abstract

Cited by 160 (11 self)
 Add to MetaCart
Dedicated to A.V. Skorohod on his seventieth birthday We prove new probabilistic upper bounds on generalization error of complex classifiers that are combinations of simple classifiers. Such combinations could be implemented by neural networks or by voting methods of combining the classifiers, such as boosting and bagging. The bounds are in terms of the empirical distribution of the margin of the combined classifier. They are based on the methods of the theory of Gaussian and empirical processes (comparison inequalities, symmetrization method, concentration inequalities) and they improve previous results of Bartlett (1998) on bounding the generalization error of neural networks in terms of ℓ1norms of the weights of neurons and of Schapire, Freund, Bartlett and Lee (1998) on bounding the generalization error of boosting. We also obtain rates of convergence in Lévy distance of empirical margin distribution to the true margin distribution uniformly over the classes of classifiers and prove the optimality of these rates.
Lectures on the central limit theorem for empirical processes
 Probability and Banach Spaces
, 1986
"... Abstract. Concentration inequalities are used to derive some new inequalities for ratiotype suprema of empirical processes. These general inequalities are used to prove several new limit theorems for ratiotype suprema and to recover anumber of the results from [1] and [2]. As a statistical applica ..."
Abstract

Cited by 135 (9 self)
 Add to MetaCart
(Show Context)
Abstract. Concentration inequalities are used to derive some new inequalities for ratiotype suprema of empirical processes. These general inequalities are used to prove several new limit theorems for ratiotype suprema and to recover anumber of the results from [1] and [2]. As a statistical application, an oracle inequality for nonparametric regression is obtained via ratio bounds. 1.
Sensing by Random Convolution
 IEEE Int. Work. on Comp. Adv. MultiSensor Adaptive Proc., CAMPSAP
, 2007
"... Abstract. This paper outlines a new framework for compressive sensing: convolution with a random waveform followed by random time domain subsampling. We show that sensing by random convolution is a universally efficient data acquisition strategy in that an ndimensional signal which is S sparse in a ..."
Abstract

Cited by 116 (8 self)
 Add to MetaCart
Abstract. This paper outlines a new framework for compressive sensing: convolution with a random waveform followed by random time domain subsampling. We show that sensing by random convolution is a universally efficient data acquisition strategy in that an ndimensional signal which is S sparse in any fixed representation can be recovered from m � S log n measurements. We discuss two imaging scenarios — radar and Fourier optics — where convolution with a random pulse allows us to seemingly superresolve finescale features, allowing us to recover highresolution signals from lowresolution measurements. 1. Introduction. The new field of compressive sensing (CS) has given us a fresh look at data acquisition, one of the fundamental tasks in signal processing. The message of this theory can be summarized succinctly [7, 8, 10, 15, 32]: the number of measurements we need to reconstruct a signal depends on its sparsity rather than its bandwidth. These measurements, however, are different than the samples that
Concentration of the Spectral Measure for Large Matrices
 ELECTRONIC COMMUNICATIONS IN PROBABILITY
, 2000
"... We derive concentration inequalities for functions of the empirical measure of eigenvalues for large, random, self adjoint matrices, with not necessarily Gaussian entries. The results presented apply in particular to nonGaussian Wigner and Wishart matrices. We also provide concentration bounds fo ..."
Abstract

Cited by 107 (15 self)
 Add to MetaCart
We derive concentration inequalities for functions of the empirical measure of eigenvalues for large, random, self adjoint matrices, with not necessarily Gaussian entries. The results presented apply in particular to nonGaussian Wigner and Wishart matrices. We also provide concentration bounds for noncommutative functionals of random matrices.
A Bennett Concentration Inequality and Its Application to Suprema of Empirical Processes
, 2002
"... We introduce new concentration inequalities for functions on product spaces They allow to obtain a Bennett type deviation bound for suprema of empirical processes indexed by upper bounded functions. The result is an improvement on Rio's version [6] of Talagrand's inequality [7] for equidis ..."
Abstract

Cited by 99 (6 self)
 Add to MetaCart
We introduce new concentration inequalities for functions on product spaces They allow to obtain a Bennett type deviation bound for suprema of empirical processes indexed by upper bounded functions. The result is an improvement on Rio's version [6] of Talagrand's inequality [7] for equidistributed variables.
Theory of classification: A survey of some recent advances
, 2005
"... The last few years have witnessed important new developments in the theory and practice of pattern classification. We intend to survey some of the main new ideas that have led to these recent results. ..."
Abstract

Cited by 93 (3 self)
 Add to MetaCart
The last few years have witnessed important new developments in the theory and practice of pattern classification. We intend to survey some of the main new ideas that have led to these recent results.
Concentration inequalities
 ADVANCED LECTURES IN MACHINE LEARNING
, 2004
"... Concentration inequalities deal with deviations of functions of independent random variables from their expectation. In the last decade new tools have been introduced making it possible to establish simple and powerful inequalities. These inequalities are at the heart of the mathematical analysis o ..."
Abstract

Cited by 89 (1 self)
 Add to MetaCart
(Show Context)
Concentration inequalities deal with deviations of functions of independent random variables from their expectation. In the last decade new tools have been introduced making it possible to establish simple and powerful inequalities. These inequalities are at the heart of the mathematical analysis of various problems in machine learning and made it possible to derive new efficient algorithms. This text attempts to summarize some of the basic tools.