Results 1 
7 of
7
Aspects of predicative algebraic set theory I: Exact Completion
 Ann. Pure Appl. Logic
"... This is the first in a series of three papers on Algebraic Set Theory. Its main purpose is to lay the necessary groundwork for the next two parts, one on ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
This is the first in a series of three papers on Algebraic Set Theory. Its main purpose is to lay the necessary groundwork for the next two parts, one on
Aspects of predicative algebraic set theory II: Realizability. Accepted for publication in Theoretical Computer Science
 In Logic Colloquim 2006, Lecture Notes in Logic
, 2009
"... This is the third in a series of papers on algebraic set theory, the aim of which is to develop a categorical semantics for constructive set theories, including predicative ones, based on the notion of a “predicative category with small maps”. 1 In the first paper in this series [8] we discussed how ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
This is the third in a series of papers on algebraic set theory, the aim of which is to develop a categorical semantics for constructive set theories, including predicative ones, based on the notion of a “predicative category with small maps”. 1 In the first paper in this series [8] we discussed how these predicative categories
Choice principles in constructive and classical set theories
 POHLERS (EDS.): PROCEEDINGS OF THE LOGIC COLLOQUIUM 2002
, 2002
"... The objective of this paper is to assay several forms of the axiom of choice that have been deemed constructive. In addition to their deductive relationships, the paper will be concerned with metamathematical properties effected by these choice principles and also with some of their classical models ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
The objective of this paper is to assay several forms of the axiom of choice that have been deemed constructive. In addition to their deductive relationships, the paper will be concerned with metamathematical properties effected by these choice principles and also with some of their classical models.
Sublocales in formal topology
 Journal of Symbolic Logic
"... Abstract. The paper studies how the localic notion of sublocale transfers to formal topology. For any formal topology (not necessarily with positivity predicate) we define a sublocale to be a cover relation that includes that of the formal topology. The family of sublocales has setindexed joins. Fo ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Abstract. The paper studies how the localic notion of sublocale transfers to formal topology. For any formal topology (not necessarily with positivity predicate) we define a sublocale to be a cover relation that includes that of the formal topology. The family of sublocales has setindexed joins. For each set of base elements there are corresponding open and closed sublocales, boolean complements of each other. They generate a boolean algebra amongst the sublocales. In the case of an inductively generated formal topology, the collection of inductively generated sublocales has coframe structure. Overt sublocales and weakly closed sublocales are described, and related via a new notion of “rest closed ” sublocale to the binary positivity predicate. Overt, weakly closed sublocales of an inductively generated formal topology are in bijection with “lower powerpoints”, arising from the impredicative theory of the lower powerlocale. Compact sublocales and fitted sublocales are described. Compact fitted sublocales of an inductively generated formal topology are in bijection with “upper powerpoints”, arising from the impredicative theory of the upper powerlocale. §1. Introduction. When one adopts a localic formulation of topology, sublocales
The Relation Reflection Scheme
, 2007
"... In this paper we introduce a new axiom scheme, the Relation Reflection Scheme (RRS), for constructive set theory. Constructive set theory is an extensional set theoretical setting for constructive mathematics. A formal ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
In this paper we introduce a new axiom scheme, the Relation Reflection Scheme (RRS), for constructive set theory. Constructive set theory is an extensional set theoretical setting for constructive mathematics. A formal
for Constructive Set Theory
, 2008
"... This article presents a generalisation of the two main methods for obtaining class models of constructive set theory. Heyting models are a generalisation of the Boolean models for classical set theory which are a kind of forcing, while realizability is a decidedly constructive method that has first ..."
Abstract
 Add to MetaCart
This article presents a generalisation of the two main methods for obtaining class models of constructive set theory. Heyting models are a generalisation of the Boolean models for classical set theory which are a kind of forcing, while realizability is a decidedly constructive method that has first been develloped for number theory by Kleene and was later very fruitfully adapted to constructive set theory. In order to achieve the generalisation, a new kind of structure (applicative topologies) is introduced, which contains both elements of formal topology and applicative structures. The generalisation not only deepens the understanding of class models and leads to more efficiency in proofs about these kind of models, but also makes it possible to prove new results about the special cases which were not known before and to construct new models. Generalising Realizability and Heyting Models
Kripke models for subtheories of CZF
"... In this paper a method to construct Kripke models for subtheories of constructive set theory is introduced that uses constructions from classical model theory such as constructible sets and generic extensions. Under the main construction all axioms except the collection axioms can be shown to hold i ..."
Abstract
 Add to MetaCart
In this paper a method to construct Kripke models for subtheories of constructive set theory is introduced that uses constructions from classical model theory such as constructible sets and generic extensions. Under the main construction all axioms except the collection axioms can be shown to hold in the constructed Kripke model. It is shown that by carefully choosing the classical models various instances of the collection axioms, such as exponentiation, can be forced to hold as well. The paper does not contain any deep results. It consists of first observations on the subject, and is meant to introduce some notions that could serve as a foundation for further research.