Results 1  10
of
54
Automatic sign language analysis: A survey and the future beyond lexical meaning
 In IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2005
"... Abstract—Research in automatic analysis of sign language has largely focused on recognizing the lexical (or citation) form of sign gestures as they appear in continuous signing, and developing algorithms that scale well to large vocabularies. However, successful recognition of lexical signs is not s ..."
Abstract

Cited by 116 (1 self)
 Add to MetaCart
Abstract—Research in automatic analysis of sign language has largely focused on recognizing the lexical (or citation) form of sign gestures as they appear in continuous signing, and developing algorithms that scale well to large vocabularies. However, successful recognition of lexical signs is not sufficient for a full understanding of sign language communication. Nonmanual signals and grammatical processes which result in systematic variations in sign appearance are integral aspects of this communication but have received comparatively little attention in the literature. In this survey, we examine data acquisition, feature extraction and classification methods employed for the analysis of sign language gestures. These are discussed with respect to issues such as modeling transitions between signs in continuous signing, modeling inflectional processes, signer independence, and adaptation. We further examine works that attempt to analyze nonmanual signals and discuss issues related to integrating these with (hand) sign gestures.We also discuss the overall progress toward a true test of sign recognition systems—dealing with natural signing by native signers. We suggest some future directions for this research and also point to contributions it can make to other fields of research. Webbased supplemental materials (appendicies) which contain several illustrative examples and videos of signing can be found at www.computer.org/publications/dlib. Index Terms—Sign language recognition, hand tracking, hand gesture recognition, gesture analysis, head tracking, head gesture recognition, face tracking, facial expression recognition, review. 1
Scaling up Dynamic Time Warping for Datamining Applications
 In Proc. 6th Int. Conf. on Knowledge Discovery and Data Mining
, 2000
"... There has been much recent interest in adapting data mining algorithms to time series databases. Most of these algorithms need to compare time series. Typically some variation of Euclidean distance is used. However, as we demonstrate in this paper, Euclidean distance can be an extremely brittle dist ..."
Abstract

Cited by 85 (3 self)
 Add to MetaCart
There has been much recent interest in adapting data mining algorithms to time series databases. Most of these algorithms need to compare time series. Typically some variation of Euclidean distance is used. However, as we demonstrate in this paper, Euclidean distance can be an extremely brittle distance measure. Dynamic time warping (DTW) has been suggested as a technique to allow more robust distance calculations, however it is computationally expensive. In this paper we introduce a modification of DTW which operates on a higher level abstraction of the data, in particular, a Piecewise Aggregate Approximation (PAA). Our approach allows us to outperform DTW by one to two orders of magnitude, with no loss of accuracy.
Making Timeseries Classification More Accurate Using Learned Constraints
, 2004
"... It has long been known that Dynamic Time Warping (DTW) is superior to Euclidean distance for classification and clustering of time series. However, until lately, most research has utilized Euclidean distance because it is more efficiently calculated. A recently introduced technique that greatly miti ..."
Abstract

Cited by 79 (18 self)
 Add to MetaCart
(Show Context)
It has long been known that Dynamic Time Warping (DTW) is superior to Euclidean distance for classification and clustering of time series. However, until lately, most research has utilized Euclidean distance because it is more efficiently calculated. A recently introduced technique that greatly mitigates DTWs demanding CPU time has sparked a flurry of research activity. However, the technique and its many extensions still only allow DTW to be applied to moderately large datasets. In addition, almost all of the research on DTW has focused exclusively on speeding up its calculation; there has been little work done on improving its accuracy. In this work, we target the accuracy aspect of DTW performance and introduce a new framework that learns arbitrary constraints on the warping path of the DTW calculation. Apart from improving the accuracy of classification, our technique as a side effect speeds up DTW by a wide margin as well. We show the utility of our approach on datasets from diverse domains and demonstrate significant gains in accuracy and efficiency.
Pattern Extraction for Time Series Classification
, 2001
"... In this paper, we propose some new tools to allow machine learning classifiers to cope with time series data. We first argue that many timeseries classification problems can be solved by detecting and combining local properties or patterns in time series. Then, a technique is proposed to find patte ..."
Abstract

Cited by 68 (2 self)
 Add to MetaCart
In this paper, we propose some new tools to allow machine learning classifiers to cope with time series data. We first argue that many timeseries classification problems can be solved by detecting and combining local properties or patterns in time series. Then, a technique is proposed to find patterns which are useful for classification. These patterns are combined to build interpretable classification rules. Experiments, carried out on several artificial and real problems, highlight the interest of the approach both in terms of interpretability and accuracy of the induced classifiers.
Iterative deepening dynamic time warping for time series
 In Proc 2 nd SIAM International Conference on Data Mining
, 2002
"... Time series are a ubiquitous form of data occurring in virtually every scientific discipline and business application. There has been much recent work on adapting data mining algorithms to time series databases. For example, Das et al. attempt to show how association rules can be learned from time s ..."
Abstract

Cited by 39 (8 self)
 Add to MetaCart
(Show Context)
Time series are a ubiquitous form of data occurring in virtually every scientific discipline and business application. There has been much recent work on adapting data mining algorithms to time series databases. For example, Das et al. attempt to show how association rules can be learned from time series [7]. Debregeas and Hebrail [8]
Knowledge Discovery from Sequential Data
, 2003
"... A new framework for analyzing sequential or temporal data such as time series is proposed. It differs from other approaches by the special emphasis on the interpretability of the results, since interpretability is of vital importance for knowledge discovery, that is, the development of new knowl ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
A new framework for analyzing sequential or temporal data such as time series is proposed. It differs from other approaches by the special emphasis on the interpretability of the results, since interpretability is of vital importance for knowledge discovery, that is, the development of new knowledge (in the head of a human) from a list of discovered patterns. While traditional approaches try to model and predict all time series observations, the focus in this work is on modelling local dependencies in multivariate time series. This
Time series knowledge mining
, 2006
"... An important goal of knowledge discovery is the search for patterns in data that can help explain the underlying process that generated the data. The patterns are required to be new, useful, and understandable to humans. In this work we present a new method for the understandable description of loca ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
An important goal of knowledge discovery is the search for patterns in data that can help explain the underlying process that generated the data. The patterns are required to be new, useful, and understandable to humans. In this work we present a new method for the understandable description of local temporal relationships in multivariate data, called Time Series Knowledge Mining (TSKM). We define the Time Series Knowledge Representation (TSKR) as a new language for expressing temporal knowledge. The patterns have a hierarchical structure, each level corresponds to a single temporal concept. On the lowest level, intervals are used to represent duration. Overlapping parts of intervals represent coincidence on the next level. Several such blocks of intervals are connected with a partial order relation on the highest level. Each pattern element consists of a semiotic triple to connect syntactic and semantic information with pragmatics. The patterns are very compact, but offer details for each element on demand. In comparison with related approaches, the TSKR is shown to have advantages in robustness, expressivity, and comprehensibility. Efficient algorithms for the discovery of the patterns are proposed. The search for coincidence as well as partial order can be formulated as variants of the well known frequent itemset problem. One of the best known algorithms for this problem is therefore adapted for our purposes. Human interaction is used during the mining to analyze and validate partial results as early as possible and guide further processing steps. The efficacy of the methods is demonstrated using several data sets. In an application to sports medicine the results were recognized as valid and useful by an expert of the field.
Optimizing time series discretization for knowledge discovery
 Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’05
, 2005
"... Knowledge Discovery in time series usually requires symbolic time series. Many discretization methods that convert numeric time series to symbolic time series ignore the temporal order of values. This often leads to symbols that do not correspond to states of the process generating the time series a ..."
Abstract

Cited by 20 (2 self)
 Add to MetaCart
(Show Context)
Knowledge Discovery in time series usually requires symbolic time series. Many discretization methods that convert numeric time series to symbolic time series ignore the temporal order of values. This often leads to symbols that do not correspond to states of the process generating the time series and cannot be interpreted meaningfully. We propose a new method for meaningful unsupervised discretization of numeric time series called Persist. The algorithm is based on the KullbackLeibler divergence between the marginal and the selftransition probability distributions of the discretization symbols. Its performance is evaluated on both artificial and real life data in comparison to the most common discretization methods. Persist achieves significantly higher accuracy than existing static methods and is robust against noise. It also outperforms Hidden Markov Models for all but very simple cases.
Learning first order logic time series classifiers
 PROCEEDINGS OF THE 4TH EUROPEAN CONFERENCE ON PRINCIPLES OF DATA MINING AND KNOWLEDGE DISCOVERY (PKDD’00
, 2000
"... ..."
Decisiontree induction from timeseries data based on standardexample split test
 In Proceedings of the 20th International Conference on Machine Learning (ICML03
, 2003
"... This paper proposes a novel decision tree for a data set with timeseries attributes. Our timeseries tree has a value (i.e. a time sequence) of a timeseries attribute in its internal node, and splits examples based on dissimilarity between a pair of time sequences. Our method selects, for a split ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
(Show Context)
This paper proposes a novel decision tree for a data set with timeseries attributes. Our timeseries tree has a value (i.e. a time sequence) of a timeseries attribute in its internal node, and splits examples based on dissimilarity between a pair of time sequences. Our method selects, for a split test, a time sequence which exists in data by exhaustive search based on class and shape information. Experimental results confirm that our induction method constructs comprehensive and accurate decision trees. Moreover, a medical application shows that our timeseries tree is promising for knowledge discovery.