Results 1  10
of
77
A New Rounding Procedure for the Assignment Problem with Applications to Dense Graph Arrangement Problems
, 2001
"... We present a randomized procedure for rounding fractional perfect matchings to (integral) matchings. If the original fractional matching satis es any linear inequality, then with high probability, the new matching satis es that linear inequality in an approximate sense. This extends the wellkn ..."
Abstract

Cited by 74 (3 self)
 Add to MetaCart
We present a randomized procedure for rounding fractional perfect matchings to (integral) matchings. If the original fractional matching satis es any linear inequality, then with high probability, the new matching satis es that linear inequality in an approximate sense. This extends the wellknown LP rounding procedure of Raghavan and Thompson, which is usually used to round fractional solutions of linear programs.
Approximation techniques for utilitarian mechanism design
 IN PROC. 36TH ACM SYMP. ON THEORY OF COMPUTING
, 2005
"... This paper deals with the design of efficiently computable incentive compatible, or truthful, mechanisms for combinatorial optimization problems with multiparameter agents. We focus on approximation algorithms for NPhard mechanism design problems. These algorithms need to satisfy certain monotonic ..."
Abstract

Cited by 64 (3 self)
 Add to MetaCart
This paper deals with the design of efficiently computable incentive compatible, or truthful, mechanisms for combinatorial optimization problems with multiparameter agents. We focus on approximation algorithms for NPhard mechanism design problems. These algorithms need to satisfy certain monotonicity properties to ensure truthfulness. Since most of the known approximation techniques do not fulfill these properties, we study alternative techniques. Our first contribution is a quite general method to transform a pseudopolynomial algorithm into a monotone FPTAS. This can be applied to various problems like, e.g., knapsack, constrained shortest path, or job scheduling with deadlines. For example, the monotone FPTAS for the knapsack problem gives a very efficient, truthful mechanism for singleminded multiunit auctions. The best previous result for such auctions was a 2approximation. In addition,
Maximizing a Submodular Set Function subject to a Matroid Constraint (Extended Abstract)
 PROC. OF 12 TH IPCO
, 2007
"... Let f: 2 N → R + be a nondecreasing submodular set function, and let (N, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2approximation [9] for this problem. It is also known, via a reduction from the maxkcover problem, that there is no (1 ..."
Abstract

Cited by 62 (9 self)
 Add to MetaCart
Let f: 2 N → R + be a nondecreasing submodular set function, and let (N, I) be a matroid. We consider the problem maxS∈I f(S). It is known that the greedy algorithm yields a 1/2approximation [9] for this problem. It is also known, via a reduction from the maxkcover problem, that there is no (1 − 1/e + ɛ)approximation for any constant ɛ> 0, unless P = NP [6]. In this paper, we improve the 1/2approximation to a (1−1/e)approximation, when f is a sum of weighted rank functions of matroids. This class of functions captures a number of interesting problems including set coverage type problems. Our main tools are the pipage rounding technique of Ageev and Sviridenko [1] and a probabilistic lemma on monotone submodular functions that might be of independent interest. We show that the generalized assignment problem (GAP) is a special case of our problem; although the reduction requires N  to be exponential in the original problem size, we are able to interpret the recent (1 − 1/e)approximation for GAP by Fleischer et al. [10] in our framework. This enables us to obtain a (1 − 1/e)approximation for variants of GAP with more complex constraints.
Market Sharing Games Applied to Content Distribution in AdHoc Networks
 MOBIHOC'04
, 2004
"... ..."
Maximum coverage problem with group budget constraints and applications
 PROC. OF APPROX, SPRINGER LNCS, 72–83
, 2004
"... We study a variant of the maximum coverage problem which we label the maximum coverage problem with group budget constraints (MCG). We are given a collection of sets S = {S1, S2,..., Sm} where each set Si is a subset of a given ground set X. In the maximum coverage problem the goal is to pick k set ..."
Abstract

Cited by 45 (3 self)
 Add to MetaCart
We study a variant of the maximum coverage problem which we label the maximum coverage problem with group budget constraints (MCG). We are given a collection of sets S = {S1, S2,..., Sm} where each set Si is a subset of a given ground set X. In the maximum coverage problem the goal is to pick k sets from S to maximize the cardinality of their union. In the MCG problem S is partitioned into groups G1, G2,..., Gℓ. The goal is to pick k sets from S to maximize the cardinality of their union but with the additional restriction that at most one set be picked from each group. We motivate the study of MCG by pointing out a variety of applications. We show that the greedy algorithm gives a 2approximation algorithm for this problem which is tight in the oracle model. We also obtain a constant factor approximation algorithm for the cost version of the problem. We then use MCG to obtain the first constant factor approximation algorithms for the following problems: (i) multiple depot ktraveling repairmen problem with covering constraints and (ii) orienteering problem with time windows when the number of time windows is a constant.
Dependent rounding and its applications to approximation algorithms
 Journal of the ACM
, 2006
"... Abstract We develop a new randomized rounding approach for fractional vectors defined on the edgesets of bipartite graphs. We show various ways of combining this technique with other ideas, leading to improved (approximation) algorithms for various problems. These include: ffl low congestion multi ..."
Abstract

Cited by 43 (5 self)
 Add to MetaCart
Abstract We develop a new randomized rounding approach for fractional vectors defined on the edgesets of bipartite graphs. We show various ways of combining this technique with other ideas, leading to improved (approximation) algorithms for various problems. These include: ffl low congestion multipath routing; ffl richer randomgraph models for graphs with a given degreesequence; ffl improved approximation algorithms for: (i) throughputmaximization in broadcast scheduling, (ii) delayminimization in broadcast scheduling, as well as (iii) capacitated vertex cover; and
Tight approximation algorithms for maximum general assignment problems
 Proc. of ACMSIAM SODA
, 2006
"... A separable assignment problem (SAP) is defined by a set of bins and a set of items to pack in each bin; a value, fij, for assigning item j to bin i; and a separate packing constraint for each bin – i.e. for bin i, a family Ii of subsets of items that fit in bin i. The goal is to pack items into bin ..."
Abstract

Cited by 42 (7 self)
 Add to MetaCart
A separable assignment problem (SAP) is defined by a set of bins and a set of items to pack in each bin; a value, fij, for assigning item j to bin i; and a separate packing constraint for each bin – i.e. for bin i, a family Ii of subsets of items that fit in bin i. The goal is to pack items into bins to maximize the aggregate value. This class of problems includes the maximum generalized assignment problem (GAP) 1) and a distributed caching problem (DCP) described in this paper. Given a βapproximation algorithm for finding the highest value packing of a single bin, we give 1. A polynomialtime LProunding based ((1 − 1 e)β)approximation algorithm. 2. A simple polynomialtime local search ( β approximation algorithm, for any ɛ> 0. β+1 − ɛ)Therefore, for all examples of SAP that admit an approximation scheme for the singlebin problem, we obtain an LPbased algorithm with (1 − 1 e − ɛ)approximation and a local search algorithm with ( 1 2 −ɛ)approximation guarantee. Furthermore, for cases in which the subproblem admits a fully polynomial approximation scheme (such as for GAP), the LPbased algorithm analysis can be strengthened to give a guarantee of 1 − 1 e. The best previously known approximation algorithm for GAP is a 1 2approximation by Shmoys and Tardos; and Chekuri and Khanna. Our LP algorithm is based on rounding a new linear programming relaxation, with a provably better integrality gap. To complement these results, we show that SAP and DCP cannot be approximated within a factor better than 1 − 1 e unless NP ⊆ DTIME(n O(log log n)), even if there exists a polynomialtime exact algorithm for the singlebin problem.
Approximation algorithms for allocation problems: Improving the Factor
 of 1 − 1/e. Proc. of IEEE FOCS
, 2006
"... Combinatorial allocation problems require allocating items to players in a way that maximizes the total utility. Two such problems received attention recently, and were addressed using the same linear programming (LP) relaxation. In the Maximum Submodular Welfare (SMW) problem, utility functions of ..."
Abstract

Cited by 42 (8 self)
 Add to MetaCart
Combinatorial allocation problems require allocating items to players in a way that maximizes the total utility. Two such problems received attention recently, and were addressed using the same linear programming (LP) relaxation. In the Maximum Submodular Welfare (SMW) problem, utility functions of players are submodular, and for this case Dobzinski and Schapira [SODA 2006] showed an approximation ratio of 1 − 1/e. In the Generalized Assignment Problem (GAP) utility functions are linear but players also have capacity constraints. GAP admits a (1 − 1/e)approximation as well, as shown by Fleischer, Goemans, Mirrokni and Sviridenko [SODA 2006]. In both cases, the approximation ratio was in fact shown for a more general version of the problem, for which improving 1 − 1/e is NPhard. In this paper, we show how to improve the 1 − 1/e approximation ratio, both for SMW and for GAP. A common theme in both improvements is the use of a new and optimal Fair Contention Resolution technique. However, each of the improvements involves a different rounding procedure for the above mentioned LP. In addition, we prove APXhardness results for SMW (such results were known for GAP). An important feature of our hardness results is that they apply even in very restricted settings, e.g. when every player has nonzero utility only for a constant number of items. 1
Parameterized Complexity for the Skeptic
 In Proc. 18th IEEE Annual Conference on Computational Complexity
, 2003
"... The goal of this article is to provide a tourist guide, with an eye towards structural issues, to what I consider some of the major highlights of parameterized complexity. ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
The goal of this article is to provide a tourist guide, with an eye towards structural issues, to what I consider some of the major highlights of parameterized complexity.
Stochastic Load Balancing and Related Problems
 In FOCS
, 1999
"... We study the problems of makespan minimization (load balancing), knapsack, and bin packing when the jobs have stochastic processing requirements or sizes. If the jobs are all Poisson, we present a two approximation for the first problem using Graham's rule, and observe that polynomial time approxima ..."
Abstract

Cited by 33 (4 self)
 Add to MetaCart
We study the problems of makespan minimization (load balancing), knapsack, and bin packing when the jobs have stochastic processing requirements or sizes. If the jobs are all Poisson, we present a two approximation for the first problem using Graham's rule, and observe that polynomial time approximation schemes can be obtained for the last two problems. If the jobs are all exponential, we present polynomial time approximation schemes for all three problems. We also obtain quasipolynomial time approximation schemes for the last two problems if the jobs are Bernoulli variables. 1 Introduction In traditional scheduling problems, each job has a known deterministic size and duration. There are cases, however, where the exact size of a job is not known at the time when a scheduling decision needs to be made; all that is known is a probability distribution on the size of the job. Given a schedule, the value of the objective function itself becomes a random variable. The goal then is to find...