Results

**1 - 1**of**1**### Delay Preserving Substructures in Wireless Networks Using Edge Difference between a

"... Abstract—In practice, wireless networks has the property that the signal strength attenuates with respect to the distance from the base station, it could be better if the nodes at two hop away are considered for better quality of service. In this paper, we propose a procedure to identify delay prese ..."

Abstract
- Add to MetaCart

Abstract—In practice, wireless networks has the property that the signal strength attenuates with respect to the distance from the base station, it could be better if the nodes at two hop away are considered for better quality of service. In this paper, we propose a procedure to identify delay preserving substructures for a given wireless ad-hoc network using a new graph operation G 2 – E (G) = G * (Edge difference of square graph of a given graph and the original graph). This operation helps to analyze some induced substructures, which preserve delay in communication among them. This operation G * on a given graph will induce a graph, in which 1-hop neighbors of any node are at 2-hop distance in the original network. In this paper, we also identify some delay preserving substructures in G*, which are (i) set of all nodes, which are mutually at 2-hop distance in G that will form a clique in G*, (ii) set of nodes which forms an odd cycle C2k+1 in G, will form an odd cycle in G* and the set of nodes which form a even cycle C2k in G that will form two disjoint companion cycles ( of same parity odd/even) of length k in G*, (iii) every path of length 2k+1 or 2k in G will induce two disjoint paths of length k in G*, and (iv) set of nodes in G*, which induces a maximal connected sub graph with radius 1 (which identifies a substructure with radius equal 2 and diameter at most 4 in G). The above delay preserving sub structures will behave as good clusters in the original network. Keywords—Clique, cycles, delay preserving substructures, maximal connected sub graph. A I.