Results 1 
3 of
3
Lower Bound Techniques for Data Structures
, 2008
"... We describe new techniques for proving lower bounds on datastructure problems, with the following broad consequences:
â¢ the first Î©(lgn) lower bound for any dynamic problem, improving on a bound that had been standing since 1989;
â¢ for static data structures, the first separation between linea ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
We describe new techniques for proving lower bounds on datastructure problems, with the following broad consequences:
â¢ the first Î©(lgn) lower bound for any dynamic problem, improving on a bound that had been standing since 1989;
â¢ for static data structures, the first separation between linear and polynomial space. Specifically, for some problems that have constant query time when polynomial space is allowed, we can show Î©(lg n/ lg lg n) bounds when the space is O(n Â· polylog n).
Using these techniques, we analyze a variety of central datastructure problems, and obtain improved lower bounds for the following:
â¢ the partialsums problem (a fundamental application of augmented binary search trees);
â¢ the predecessor problem (which is equivalent to IP lookup in Internet routers);
â¢ dynamic trees and dynamic connectivity;
â¢ orthogonal range stabbing;
â¢ orthogonal range counting, and orthogonal range reporting;
â¢ the partial match problem (searching with wildcards);
â¢ (1 + Îµ)approximate near neighbor on the hypercube;
â¢ approximate nearest neighbor in the lâ metric.
Our new techniques lead to surprisingly nontechnical proofs. For several problems, we obtain simpler proofs for bounds that were already known.
Web www.itu.dk Generalized static orthogonal range searching in less space
, 2003
"... less space ..."
(Show Context)
Ph.D. thesis
"... Data structures for orthogonal intersection searching and other problems ..."
(Show Context)