Results 1 
3 of
3
Gödel's program for new axioms: Why, where, how and what?
 IN GODEL '96
, 1996
"... From 1931 until late in his life (at least 1970) Gödel called for the pursuit of new axioms for mathematics to settle both undecided numbertheoretical propositions (of the form obtained in his incompleteness results) and undecided settheoretical propositions (in particular CH). As to the nature of ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
From 1931 until late in his life (at least 1970) Gödel called for the pursuit of new axioms for mathematics to settle both undecided numbertheoretical propositions (of the form obtained in his incompleteness results) and undecided settheoretical propositions (in particular CH). As to the nature of these, Gödel made a variety of suggestions, but most frequently he emphasized the route of introducing ever higher axioms of in nity. In particular, he speculated (in his 1946 Princeton remarks) that there might be a uniform (though nondecidable) rationale for the choice of the latter. Despite the intense exploration of the "higher infinite" in the last 30odd years, no single rationale of that character has emerged. Moreover, CH still remains undecided by such axioms, though they have been demonstrated to have many other interesting settheoretical consequences. In this paper, I present a new very general notion of the "unfolding" closure of schematically axiomatized formal systems S which provides a uniform systematic means of expanding in an essential way both the language and axioms (and hence theorems) of such systems S. Reporting joint work with T. Strahm, a characterization is given in more familiar terms in the case that S is a basic
Does Mathematics Need New Axioms?
 American Mathematical Monthly
, 1999
"... this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called f ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
this article I will be looking at the leading question from the point of view of the logician, and for a substantial part of that, from the perspective of one supremely important logician: Kurt Godel. From the time of his stunning incompleteness results in 1931 to the end of his life, Godel called for the pursuit of new axioms to settle undecided arithmetical problems. And from 1947 on, with the publication of his unusual article, "What is Cantor's continuum problem?" [11], he called in addition for the pursuit of new axioms to settle Cantor's famous conjecture about the cardinal number of the continuum. In both cases, he pointed primarily to schemes of higher infinity in set theory as the direction in which to seek these new principles. Logicians have learned a great deal in recent years that is relevant to Godel's program, but there is considerable disagreement about what conclusions to draw from their results. I'm far from unbiased in this respect, and you'll see how I come out on these matters by the end of this essay, but I will try to give you a fair presentation of other positions along the way so you can decide for yourself which you favor.