Results 1 
2 of
2
Competitive Paging With Locality of Reference
 Journal of Computer and System Sciences
, 1991
"... Abstract The SleatorTarjan competitive analysis of paging [Comm. of the ACM; 28:202 208, 1985] gives us the ability to make strong theoretical statements about the performance of paging algorithms without making probabilistic assumptions on the input. Nevertheless practitioners voice reservations ..."
Abstract

Cited by 124 (3 self)
 Add to MetaCart
(Show Context)
Abstract The SleatorTarjan competitive analysis of paging [Comm. of the ACM; 28:202 208, 1985] gives us the ability to make strong theoretical statements about the performance of paging algorithms without making probabilistic assumptions on the input. Nevertheless practitioners voice reservations about the model, citing its inability to discern between LRU and FIFO (algorithms whose performances differ markedly in practice), and the fact that the theoretical competitiveness of LRU is much larger than observed in practice. In addition, we would like to address the following important question: given some knowledge of a program's reference pattern, can we use it to improve paging performance on that program?
AND
, 1988
"... The kserver problem is that of planning the motion of k mobile servers on the vertices of a graph under a sequence of requests for service. Each request consists of the name of a vertex, and is satisfied by placing a server at the requested vertex. The requests must be satisfied in their order of o ..."
Abstract
 Add to MetaCart
(Show Context)
The kserver problem is that of planning the motion of k mobile servers on the vertices of a graph under a sequence of requests for service. Each request consists of the name of a vertex, and is satisfied by placing a server at the requested vertex. The requests must be satisfied in their order of occurrence. The cost of satisfying a sequence of requests is the distance moved by the servers. In this paper we study online algorithms for this problem from the competitive point of view. That is, we seek to develop online algorithms whose performance on any sequence of requests is as close as possible to the performance of the optimum offline algorithm. We obtain optimally competitive algorithms for several important cases. Because of the flexibility in choosing the distances in the graph and the number of servers, the kserver problem can be used to model a number of important paging and caching problems. It can also be used as a building block for solving more general problems. We show how server algorithms can be used to solve a seemingly more general class of problems known as tusk systems. Q 1990 A~&C h, Inc.