Results 1  10
of
27
Higher dimensional algebra III: ncategories and the algebra of opetopes
, 1997
"... We give a definition of weak ncategories based on the theory of operads. We work with operads having an arbitrary set S of types, or ‘Soperads’, and given such an operad O, we denote its set of operations by elt(O). Then for any Soperad O there is an elt(O)operad O + whose algebras are Soperads ..."
Abstract

Cited by 74 (6 self)
 Add to MetaCart
We give a definition of weak ncategories based on the theory of operads. We work with operads having an arbitrary set S of types, or ‘Soperads’, and given such an operad O, we denote its set of operations by elt(O). Then for any Soperad O there is an elt(O)operad O + whose algebras are Soperads over O. Letting I be the initial operad with a oneelement set of types, and defining I 0+ = I, I (i+1)+ = (I i+) +, we call the operations of I (n−1)+ the ‘ndimensional opetopes’. Opetopes form a category, and presheaves on this category are called ‘opetopic sets’. A weak ncategory is defined as an opetopic set with certain properties, in a manner reminiscent of Street’s simplicial approach to weak ωcategories. In a similar manner, starting from an arbitrary operad O instead of I, we define ‘ncoherent Oalgebras’, which are n times categorified analogs of algebras of O. Examples include ‘monoidal ncategories’, ‘stable ncategories’, ‘virtual nfunctors ’ and ‘representable nprestacks’. We also describe how ncoherent Oalgebra objects may be defined in any (n + 1)coherent Oalgebra.
Presheaf Models for Concurrency
, 1999
"... In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their wo ..."
Abstract

Cited by 45 (19 self)
 Add to MetaCart
In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that presheaf categories could provide abstract models for concurrency with a builtin notion of bisimulation. We show how
A 2Categorical Approach To Change Of Base And Geometric Morphisms II
, 1998
"... We introduce a notion of equipment which generalizes the earlier notion of proarrow equipment and includes such familiar constructs as relK, spnK, parK, and proK for a suitable category K, along with related constructs such as the Vpro arising from a suitable monoidal category V. We further exhibi ..."
Abstract

Cited by 43 (7 self)
 Add to MetaCart
We introduce a notion of equipment which generalizes the earlier notion of proarrow equipment and includes such familiar constructs as relK, spnK, parK, and proK for a suitable category K, along with related constructs such as the Vpro arising from a suitable monoidal category V. We further exhibit the equipments as the objects of a 2category, in such a way that arbitrary functors F: L ✲ K induce equipment arrows relF: relL ✲ relK, spnF: spnL ✲ spnK, and so on, and similarly for arbitrary monoidal functors V ✲ W. The article I with the title above dealt with those equipments M having each M(A, B) only an ordered set, and contained a detailed analysis of the case M = relK; in the present article we allow the M(A, B) to be general categories, and illustrate our results by a detailed study of the case M = spnK. We show in particular that spn is a locallyfullyfaithful 2functor to the 2category of equipments, and determine its image on arrows. After analyzing the nature of adjunctions in the 2category of equipments, we are able to give a simple characterization of those spnG which arise from a geometric morphism G.
Simplicial Matrices And The Nerves Of Weak nCategories I: Nerves Of Bicategories
, 2002
"... To a bicategory B (in the sense of Benabou) we assign a simplicial set Ner(B), the (geometric) nerve of B, which completely encodes the structure of B as a bicategory. As a simplicial set Ner(B) is a subcomplex of its 2Coskeleton and itself isomorphic to its 3Coskeleton, what we call a 2dimensio ..."
Abstract

Cited by 26 (1 self)
 Add to MetaCart
To a bicategory B (in the sense of Benabou) we assign a simplicial set Ner(B), the (geometric) nerve of B, which completely encodes the structure of B as a bicategory. As a simplicial set Ner(B) is a subcomplex of its 2Coskeleton and itself isomorphic to its 3Coskeleton, what we call a 2dimensional Postnikov complex. We then give, somewhat more delicately, a complete characterization of those simplicial sets which are the nerves of bicategories as certain 2dimensional Postnikov complexes which satisfy certain restricted "exact hornlifting" conditions whose satisfaction is controlled by (and here defines) subsets of (abstractly) invertible 2 and 1simplices. Those complexes which have, at minimum, their degenerate 2simplices always invertible and have an invertible 2simplex # 1 2 (x 12 , x 01 ) present for each "composable pair" (x 12 , , x 01 ) # # 1 2 are exactly the nerves of bicategories. At the other extreme, where all 2 and 1simplices are invertible, are those Kan complexes in which the Kan conditions are satisfied exactly in all dimensions > 2. These are exactly the nerves of bigroupoids  all 2cells are isomorphisms and all 1cells are equivalences. Contents
Combinatorics of nonabelian gerbes with connection and curvature
, 203
"... Abstract: We give a functorial definition of Ggerbes over a simplicial complex when the local symmetry group G is nonAbelian. These combinatorial gerbes are naturally endowed with a connective structure and a curving. This allows us to define a fibered category equipped with a functorial connectio ..."
Abstract

Cited by 22 (2 self)
 Add to MetaCart
Abstract: We give a functorial definition of Ggerbes over a simplicial complex when the local symmetry group G is nonAbelian. These combinatorial gerbes are naturally endowed with a connective structure and a curving. This allows us to define a fibered category equipped with a functorial connection over the space of edgepaths. By computing the curvature of the latter on the faces of an infinitesimal 4simplex, we recover the cocycle identities satisfied by the curvature of this gerbe. The link with BFtheories suggests that gerbes provide a framework adapted to the geometric formulation of strongly coupled gauge theories.
Pasting In Multiple Categories
 Theory Appl. Categ
, 1998
"... . In the literature there are several kinds of concrete and abstract cell complexes representing composition in ncategories, !categories or 1categories, and the slightly more general partial !categories. Some examples are parity complexes, pasting schemes and directed complexes. In this paper we ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
. In the literature there are several kinds of concrete and abstract cell complexes representing composition in ncategories, !categories or 1categories, and the slightly more general partial !categories. Some examples are parity complexes, pasting schemes and directed complexes. In this paper we give an axiomatic treatment: that is to say, we study the class of `!complexes' which consists of all complexes representing partial !categories. We show that !complexes can be given geometric structures and that in most important examples they become wellbehaved CW complexes; we characterise !complexes by conditions on their cells; we show that a product of !complexes is again an !complex; and we describe some products in detail. 1. Introduction In this paper we consider pasting diagrams representing compositions in multiple categories. To be specific, the multiple categories concerned are ncategories and their infinitedimensional analogues, which are called !categories or 1cat...
Generalized operads and their inner cohomomorphisms, arXiv:math.CT/ 0609748
, 2006
"... Abstract. In this paper we introduce a notion of generalized operad containing as special cases various kinds of operad–like objects: ordinary, cyclic, modular, properads etc. We then construct inner cohomomorphism objects in their categories (and categories of algebras over them). We argue that the ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
Abstract. In this paper we introduce a notion of generalized operad containing as special cases various kinds of operad–like objects: ordinary, cyclic, modular, properads etc. We then construct inner cohomomorphism objects in their categories (and categories of algebras over them). We argue that they provide an approach to symmetry and moduli objects in noncommutative geometries based upon these “ring–like ” structures. We give a unified axiomatic treatment of generalized operads as functors on categories of abstract labeled graphs. Finally, we extend inner cohomomorphism constructions to more general categorical contexts. This version differs from the previous ones by several local changes (including the title) and two extra references. 0.1. Inner cohomomorphisms of associative algebras. Let k be a field. Consider pairs A = (A, A1) consisting of an associative k–algebra A and a finite dimensional subspace A1 generating A. For two such pairs A = (A, A1) and B =
Computing Critical Pairs in 2Dimensional Rewriting Systems
, 2010
"... Rewriting systems on words are very useful in the study of monoids. In good cases, they give finite presentations of the monoids, allowing their manipulation by a computer. Even better, when the presentation is confluent and terminating, they provide one with a notion of canonical representative for ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
Rewriting systems on words are very useful in the study of monoids. In good cases, they give finite presentations of the monoids, allowing their manipulation by a computer. Even better, when the presentation is confluent and terminating, they provide one with a notion of canonical representative for the elements of the presented monoid. Polygraphs are a higherdimensional generalization of this notion of presentation, from the setting of monoids to the much more general setting of ncategories. Here, we are interested in proving confluence for polygraphs presenting 2categories, which can be seen as a generalization of termrewriting systems. For this purpose, we propose an adaptation of the usual algorithm for computing critical pairs. Interestingly, this framework is much richer than term rewriting systems and requires the elaboration of a new theoretical framework for representing critical pairs, based on contexts in compact 2categories. Term rewriting systems have proven very useful to reason about terms modulo equations. In some cases, the equations can be oriented and completed in a way giving rise to a normalizing (i.e. confluent and terminating) rewriting system, thus providing a notion of canonical representative of equivalence classes of terms. Usually, terms are freely generated by a signature (Σn)n∈N, which consists of a family of sets Σn of generators of arity n, and one considers equational theories on such a signature, which are formalized by sets of pairs of terms called equations. For example, the equational theory of monoids contains two generators m and e, whose arities are respectively 2 and 0, and three equations
Geometric Satake, Springer correspondence, and small representations, preprint arXiv:1108.4999
 I (Luminy, 1981), Astérisque 100 (1982), 5–171. PRAMOD N. ACHAR, ANTHONY HENDERSON, AND SIMON RICHE hal00700454, version 1  23
, 2012
"... Abstract. For a split reductive group scheme ˇ G over a commutative ring k with Weyl group W, there is an important functor Rep ( ˇ G, k) → Rep(W, k) defined by taking the zero weight space. We prove that the restriction of this functor to the subcategory of small representations has an alternativ ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
Abstract. For a split reductive group scheme ˇ G over a commutative ring k with Weyl group W, there is an important functor Rep ( ˇ G, k) → Rep(W, k) defined by taking the zero weight space. We prove that the restriction of this functor to the subcategory of small representations has an alternative geometric description, in terms of the affine Grassmannian and the nilpotent cone of the Langlands dual group G. The translation from representation theory to geometry is via the Satake equivalence and the Springer correspondence. This generalizes the result for the k = C case proved by the first two authors, and also provides a better explanation than in that earlier paper, since the current proof is uniform across all types. 1.