Results 11  20
of
42
A NonStandard Semantics for Kahn Networks in Continuous Time
"... In a seminal article, Kahn has introduced the notion of process network and given a semantics for those using Scott domains whose elements are (possibly infinite) sequences of values. This model has since then become a standard tool for studying distributed asynchronous computations. From the beginn ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
In a seminal article, Kahn has introduced the notion of process network and given a semantics for those using Scott domains whose elements are (possibly infinite) sequences of values. This model has since then become a standard tool for studying distributed asynchronous computations. From the beginning, process networks have been drawn as particular graphs, but this syntax is never formalized. We take the opportunity to clarify it by giving a precise definition of these graphs,
Identities among relations for higherdimensional rewriting systems
"... Abstract – We generalize the notion of identities among relations, well known for presentations of groups, to presentations of ncategories by polygraphs. To each polygraph, we associate a track ncategory, generalizing the notion of crossed module for groups, in order to define the natural system o ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
(Show Context)
Abstract – We generalize the notion of identities among relations, well known for presentations of groups, to presentations of ncategories by polygraphs. To each polygraph, we associate a track ncategory, generalizing the notion of crossed module for groups, in order to define the natural system of identities among relations. We relate the facts that this natural system is finitely generated and that the polygraph has finite derivation type. Support – This work has been partially supported by ANR Inval project (ANR05BLAN0267).
Polygraphic resolutions and homology of monoids
, 2007
"... We prove that for any monoid M, the homology defined by the second author by means of polygraphic resolutions coincides with the homology classically defined by means of resolutions by free ZMmodules. 1 ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
We prove that for any monoid M, the homology defined by the second author by means of polygraphic resolutions coincides with the homology classically defined by means of resolutions by free ZMmodules. 1
2011): Categorification, term rewriting and the KnuthBendix procedure
 J. of Pure and Appl. Alg
"... ABSTRACT. An axiomatization of a finitary, equational universal algebra by a convergent term rewrite system gives rise to a finite, coherent categorification of the algebra. ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
ABSTRACT. An axiomatization of a finitary, equational universal algebra by a convergent term rewrite system gives rise to a finite, coherent categorification of the algebra.
Formal Relationships Between Geometrical and Classical Models for Concurrency
"... Abstract. A wide variety of models for concurrent programs has been proposed during the past decades, each one focusing on various aspects of computations: trace equivalence, causality between events, conflicts and schedules due to resource accesses, etc. More recently, models with a geometrical fla ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
Abstract. A wide variety of models for concurrent programs has been proposed during the past decades, each one focusing on various aspects of computations: trace equivalence, causality between events, conflicts and schedules due to resource accesses, etc. More recently, models with a geometrical flavor have been introduced, based on the notion of cubical set. These models are very rich and expressive since they can represent commutation between any number of events, thus generalizing the principle of true concurrency. While they seem to be very promising – because they make possible the use of techniques from algebraic topology in order to study concurrent computations – they have not yet been precisely related to the previous models, and the purpose of this paper is to fill this gap. In particular, we describe an adjunction between Petri nets and cubical sets which extends the previously known adjunction between Petri nets and asynchronous transition systems by Nielsen and Winskel. 1 1
Coherence in monoidal track categories
"... Abstract – We introduce homotopical methods based on rewriting on higherdimensional categories to prove coherence results in categories with an algebraic structure. We express the coherence problem for (symmetric) monoidal categories as an asphericity problem for a track category and use rewriting ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
Abstract – We introduce homotopical methods based on rewriting on higherdimensional categories to prove coherence results in categories with an algebraic structure. We express the coherence problem for (symmetric) monoidal categories as an asphericity problem for a track category and use rewriting methods on polygraphs to solve it. The setting is generalized to more general coherence problems, seen as 3dimensional word problems in a track category. We prove general results that, in the case of braided monoidal categories, yield the coherence theorem for braided monoidal categories.
A folk model structure on omegacat
, 2009
"... The primary aim of this work is an intrinsic homotopy theory of strict ωcategories. We establish a model structure on ωCat, the category of strict ωcategories. The constructions leading to the model structure in question are expressed entirely within the scope of ωCat, building on a set of generat ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
The primary aim of this work is an intrinsic homotopy theory of strict ωcategories. We establish a model structure on ωCat, the category of strict ωcategories. The constructions leading to the model structure in question are expressed entirely within the scope of ωCat, building on a set of generating cofibrations and a class of weak equivalences as basic items. All object are fibrant while free objects are cofibrant. We further exhibit model structures of this type on ncategories for arbitrary n ∈ N, as specialisations of the ωcategorical one along right adjoints. In particular, known cases for n = 1 and n = 2 nicely fit into the scheme.
Diagram rewriting and operads
, 2009
"... We introduce an explicit diagrammatic syntax for PROs and PROPs, which are used in the theory of operads. By means of diagram rewriting, we obtain presentations of PROs by generators and relations, and in some cases, we even get convergent rewrite systems. This diagrammatic syntax is useful for prac ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
We introduce an explicit diagrammatic syntax for PROs and PROPs, which are used in the theory of operads. By means of diagram rewriting, we obtain presentations of PROs by generators and relations, and in some cases, we even get convergent rewrite systems. This diagrammatic syntax is useful for practical computations, but also for theoretical results. Moreover, rewriting is strongly related to homotopy theory. For instance, it can be used to compute homological invariants of algebraic structures, or to prove coherence results.
Computing Critical Pairs in Polygraphs
 In Workshop on Computer Algebra Methods and Commutativity of Algebraic Diagrams (CAMCAD
, 2009
"... Polygraphs generalize to 2categories the usual notion of equational theory, by describing them as quotients, modulo equations, of freely generated 2categories on a given set of generators. In order to work with morphisms modulo the equations, it is often convenient to orient the equations into a c ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Polygraphs generalize to 2categories the usual notion of equational theory, by describing them as quotients, modulo equations, of freely generated 2categories on a given set of generators. In order to work with morphisms modulo the equations, it is often convenient to orient the equations into a confluent rewriting system. In the case of a terminating system, confluence can be checked by showing that critical pairs are joinable. However, the computation of the critical pairs is more complicated for polygraphs than for term rewriting systems: in particular, two left members of a rule don’t necessarily have a finite number of unifiers. We advocate here that a more general notion of rewriting system should be considered instead, and introduce an operad of compact contexts in a 2category, in which two rules have a finite number of unifiers. A concrete representation of contexts is proposed, as well as an unification algorithm for these.