Results 1  10
of
11
The Structure of CallbyValue
, 2000
"... To my parents Understanding procedure calls is crucial in computer science and everyday programming. Among the most common strategies for passing procedure arguments (‘evaluation strategies’) are ‘callbyname’, ‘callbyneed’, and ‘callbyvalue’, where the latter is the most commonly used. While ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
To my parents Understanding procedure calls is crucial in computer science and everyday programming. Among the most common strategies for passing procedure arguments (‘evaluation strategies’) are ‘callbyname’, ‘callbyneed’, and ‘callbyvalue’, where the latter is the most commonly used. While reasoning about procedure calls is simple for callbyname, problems arise for callbyneed and callbyvalue, because it matters how often and in which order the arguments of a procedure are evaluated. We shall classify these problems and see that all of them occur for callbyvalue, some occur for callbyneed, and none occur for callbyname. In that sense, callbyvalue is the ‘greatest common denominator ’ of the three evaluation strategies. Reasoning about callbyvalue programs has been tackled by Eugenio Moggi’s ‘computational lambdacalculus’, which is based on a distinction between ‘values’
Some Algebraic Laws for Spans (and Their Connections With MultiRelations)
 Proceedings of RelMiS 2001, Workshop on Relational Methods in Software. Electronic Notes in Theoretical Computer Science, n.44 v.3, Elsevier Science (2001
, 2001
"... This paper investigates some basic algebraic properties of the categories of spans and cospans (up to isomorphic supports) over the category Set of (small) sets and functions, analyzing the monoidal structures induced over both spans and cospans by the cartesian product and disjoint union of sets. O ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
This paper investigates some basic algebraic properties of the categories of spans and cospans (up to isomorphic supports) over the category Set of (small) sets and functions, analyzing the monoidal structures induced over both spans and cospans by the cartesian product and disjoint union of sets. Our results nd analogous counterparts in (and are partly inspired by) the theory of relational algebras, thus our paper also shed some light on the relationship between (co)spans and the categories of (multi)relations and of equivalence relations. And, since (co)spans yields an intuitive presentation in terms of dynamical system with input and output interfaces, our results introduce an expressive, twofold algebra that can serve as a specication formalism for rewriting systems and for composing software modules and open programs. Key words: Spans, multirelations, monoidal categories, system specications. Introduction The use of spans [1,6] (and of the dual notion of cospans) have been...
The HasCasl prologue: categorical syntax and semantics of the partial λcalculus
 COMPUT. SCI
, 2006
"... We develop the semantic foundations of the specification language HasCasl, which combines algebraic specification and functional programming on the basis of Moggi’s partial λcalculus. Generalizing Lambek’s classical equivalence between the simply typed λcalculus and cartesian closed categories, we ..."
Abstract

Cited by 6 (4 self)
 Add to MetaCart
We develop the semantic foundations of the specification language HasCasl, which combines algebraic specification and functional programming on the basis of Moggi’s partial λcalculus. Generalizing Lambek’s classical equivalence between the simply typed λcalculus and cartesian closed categories, we establish an equivalence between partial cartesian closed categories (pccc’s) and partial λtheories. Building on these results, we define (settheoretic) notions of intensional Henkin model and syntactic λalgebra for Moggi’s partial λcalculus. These models are shown to be equivalent to the originally described categorical models in pccc’s via the global element construction. The semantics of HasCasl is defined in terms of syntactic λalgebras. Correlations between logics and classes of categories facilitate reasoning both on the logical and on the categorical side; as an application, we pinpoint unique choice as the distinctive feature of topos logic (in comparison to intuitionistic higherorder logic of partial functions, which by our results is the logic of pccc’s with equality). Finally, we give some applications of the modeltheoretic equivalence result to the semantics of HasCasl and its relation to firstorder Casl.
Term Graph Syntax for MultiAlgebras
, 2000
"... Multialgebras allow to model nondeterminism in an algebraic framework by interpreting operators as functions from individual arguments to sets of possible results. Starting from a functorial presentation of multialgebras based on gsmonoidal theories, we argue that speci cations for multialgebras ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
Multialgebras allow to model nondeterminism in an algebraic framework by interpreting operators as functions from individual arguments to sets of possible results. Starting from a functorial presentation of multialgebras based on gsmonoidal theories, we argue that speci cations for multialgebras should be based on the notion of term graphs instead of on standard terms. We consider the simplest case of (term graph) equational specification, showing that it enjoys an unrestricted form of substitutivity. We discuss the expressive power of equational specification for multialgebras, and we sketch possible extensions of the calculus.
Classifying Categories for Partial Equational Logic
, 2002
"... Along the lines of classical categorical type theory for total functions, we establish equivalence results between certain classes of partial equational theories on the one hand and corresponding classes of categories on the other hand, staying close to standard categorical notions. ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
Along the lines of classical categorical type theory for total functions, we establish equivalence results between certain classes of partial equational theories on the one hand and corresponding classes of categories on the other hand, staying close to standard categorical notions.
Controlflow semantics for assemblylevel dataflow graphs
 8th Intl. Seminar on Relational Methods in Computer Science, RelMiCS 2005, volume 3929 of LNCS
, 2006
"... Abstract. As part of a larger project, we have built a declarative assembly language that enables us to specify multiple code paths to compute particular quantities, giving the instruction scheduler more flexibility in balancing execution resources for superscalar execution. Since the key design poi ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
Abstract. As part of a larger project, we have built a declarative assembly language that enables us to specify multiple code paths to compute particular quantities, giving the instruction scheduler more flexibility in balancing execution resources for superscalar execution. Since the key design points for this language are to only describe data flow, have builtin facilities for redundancies, and still have code that looks like assembler, by virtue of consisting mainly of assembly instructions, we are basing the theoretical foundations on dataflow graph theory, and have to accommodate also relational aspects. Using functorial semantics into a Kleene category of “hyperpaths”, we formally capture the dataflowwithchoice aspects of this language and its implementation, providing also the framework for the necessary correctness proofs. 1
Inequational Deduction as Term Graph Rewriting
"... Multialgebras allow to model nondeterminism in an algebraic framework by interpreting operators as functions from individual arguments to sets of possible results. We propose a simple inequational deduction system, based on term graphs, for inferring inclusions of derived relations in a multialgeb ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Multialgebras allow to model nondeterminism in an algebraic framework by interpreting operators as functions from individual arguments to sets of possible results. We propose a simple inequational deduction system, based on term graphs, for inferring inclusions of derived relations in a multialgebra, and we show that term graph rewriting provides a sound and complete implementation of it.
Appligraph: Applications of Graph Transformation  Fourth Annual Progress Report
, 2001
"... This report summarizes the activities in the fourth year of the ESPRIT Working Group APPLIGRAPH, covering the period from April 1, 2000, to March 31, 2001. The principal objective of this Working Group is to promote applied graph transformation as a rulebased framework for the specication and devel ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This report summarizes the activities in the fourth year of the ESPRIT Working Group APPLIGRAPH, covering the period from April 1, 2000, to March 31, 2001. The principal objective of this Working Group is to promote applied graph transformation as a rulebased framework for the specication and development of systems, languages, and tools and to improve the awareness of its industrial relevance
ATermGraphSyntax for Algebras over Multisets ⋆
"... Abstract. Earlier papers argued that term graphs play for the specification of relationbased algebras the same role that standard terms play for total algebras. The present contribution enforces the claim by showing that term graphs are a sound and complete representation for multiset algebras, i.e ..."
Abstract
 Add to MetaCart
Abstract. Earlier papers argued that term graphs play for the specification of relationbased algebras the same role that standard terms play for total algebras. The present contribution enforces the claim by showing that term graphs are a sound and complete representation for multiset algebras, i.e., algebras whose operators are interpreted over multisets. 1