Results 1  10
of
21
Geometric Shortest Paths and Network Optimization
 Handbook of Computational Geometry
, 1998
"... Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to be the sum of the weights of t ..."
Abstract

Cited by 147 (12 self)
 Add to MetaCart
Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to be the sum of the weights of the edges that comprise it. Efficient algorithms are well known for this problem, as briefly summarized below. The shortest path problem takes on a new dimension when considered in a geometric domain. In contrast to graphs, where the encoding of edges is explicit, a geometric instance of a shortest path problem is usually specified by giving geometric objects that implicitly encode the graph and its edge weights. Our goal in devising efficient geometric algorithms is generally to avoid explicit construction of the entire underlying graph, since the full induced graph may be very large (even exponential in the input size, or infinite). Computing an optimal
Exact and Approximate Distances in Graphs  a survey
 In ESA
, 2001
"... We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems. ..."
Abstract

Cited by 57 (0 self)
 Add to MetaCart
We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems.
Undirected Single Source Shortest Paths in Linear Time
 J. Assoc. Comput. Mach
, 1997
"... The single source shortest paths problem (SSSP) is one of the classic problems in algorithmic graph theory: given a weighted graph G with a source vertex s, find the shortest path from s to all other vertices in the graph. Since 1959 all theoretical developments in SSSP have been based on Dijkstra' ..."
Abstract

Cited by 49 (3 self)
 Add to MetaCart
The single source shortest paths problem (SSSP) is one of the classic problems in algorithmic graph theory: given a weighted graph G with a source vertex s, find the shortest path from s to all other vertices in the graph. Since 1959 all theoretical developments in SSSP have been based on Dijkstra's algorithm, visiting the vertices in order of increasing distance from s. Thus, any implementation of Dijkstra 's algorithm sorts the vertices according to their distances from s. However, we do not know how to sort in linear time. Here, a deterministic linear time and linear space algorithm is presented for the undirected single source shortest paths problem with integer weights. The algorithm avoids the sorting bottleneck by building a hierechical bucketing structure, identifying vertex pairs that may be visited in any order. 1 Introduction Let G = (V; E), jV j = n, jEj = m, be an undirected connected graph with an integer edge weight function ` : E ! N and a distinguished source vertex...
SingleSource ShortestPaths on Arbitrary Directed Graphs in Linear AverageCase Time
 In Proc. 12th ACMSIAM Symposium on Discrete Algorithms
, 2001
"... The quest for a lineartime singlesource shortestpath (SSSP) algorithm on directed graphs with positive edge weights is an ongoing hot research topic. While Thorup recently found an O(n + m) time RAM algorithm for undirected graphs with n nodes, m edges and integer edge weights in f0; : : : ; 2 w ..."
Abstract

Cited by 28 (5 self)
 Add to MetaCart
The quest for a lineartime singlesource shortestpath (SSSP) algorithm on directed graphs with positive edge weights is an ongoing hot research topic. While Thorup recently found an O(n + m) time RAM algorithm for undirected graphs with n nodes, m edges and integer edge weights in f0; : : : ; 2 w 1g where w denotes the word length, the currently best time bound for directed sparse graphs on a RAM is O(n + m log log n). In the present paper we study the averagecase complexity of SSSP. We give a simple algorithm for arbitrary directed graphs with random edge weights uniformly distributed in [0; 1] and show that it needs linear time O(n + m) with high probability. 1 Introduction The singlesource shortestpath problem (SSSP) is a fundamental and wellstudied combinatorial optimization problem with many practical and theoretical applications [1]. Let G = (V; E) be a directed graph, jV j = n, jEj = m, let s be a distinguished vertex of the graph, and c be a function assigning a n...
Integer Priority Queues with Decrease Key in . . .
 STOC'03
, 2003
"... We consider Fibonacci heap style integer priority queues supporting insert and decrease key operations in constant time. We present a deterministic linear space solution that with n integer keys support delete in O(log log n) time. If the integers are in the range [0,N), we can also support delete i ..."
Abstract

Cited by 27 (2 self)
 Add to MetaCart
We consider Fibonacci heap style integer priority queues supporting insert and decrease key operations in constant time. We present a deterministic linear space solution that with n integer keys support delete in O(log log n) time. If the integers are in the range [0,N), we can also support delete in O(log log N) time. Even for the special case of monotone priority queues, where the minimum has to be nondecreasing, the best previous bounds on delete were O((log n) 1/(3−ε) ) and O((log N) 1/(4−ε)). These previous bounds used both randomization and amortization. Our new bounds a deterministic, worstcase, with no restriction to monotonicity, and exponentially faster. As a classical application, for a directed graph with n nodes and m edges with nonnegative integer weights, we get single source shortest paths in O(m + n log log n) time, or O(m + n log log C) ifC is the maximal edge weight. The later solves an open problem of Ahuja, Mehlhorn, Orlin, and
Improved shortest paths on the word RAM
 in: 27th Colloquium on Automata, Languages and Programming (ICALP), in: Lecture Notes in Comput. Sci
"... Abstract. Thorup recently showed that singlesource shortestpaths problems in undirected networks with n vertices, m edges, and edge weights drawn from {0,...,2 w − 1} can be solved in O(n + m) time and space on a unitcost randomaccess machine with a word length of w bits. His algorithm works by ..."
Abstract

Cited by 24 (0 self)
 Add to MetaCart
Abstract. Thorup recently showed that singlesource shortestpaths problems in undirected networks with n vertices, m edges, and edge weights drawn from {0,...,2 w − 1} can be solved in O(n + m) time and space on a unitcost randomaccess machine with a word length of w bits. His algorithm works by traversing a socalled component tree. Two new related results are provided here. First, and most importantly, Thorup’s approach is generalized from undirected to directed networks. The resulting time bound, O(n + m log w), is the best deterministic linearspace bound known for sparse networks unless w is superpolynomial in log n. As an application, allpairs shortestpaths problems in directed networks with n vertices, m edges, and edge weights in {−2 w,...,2 w} can be solved in O(nm + n 2 log log n) time and O(n + m) space (not counting the output space). Second, it is shown that the component tree for an undirected network can be constructed in deterministic linear time and space with a simple algorithm, to be contrasted with a complicated and impractical solution suggested by Thorup. Another contribution of the present paper is a greatly simplified view of the principles underlying algorithms based on component trees. 1
Computing Shortest Paths with Comparisons and Additions
 SODA
, 2002
"... We present an undirected allpairs shortest paths (APSP) algorithm which runs on a pointer machine in time O(mnot(m, n)) while making O(ran log a(m, n)) comparisons and additions, where m and n are the number of edges and vertices, respectively, and a(ra, n) is Tarjan's inverseAckermann function. ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
We present an undirected allpairs shortest paths (APSP) algorithm which runs on a pointer machine in time O(mnot(m, n)) while making O(ran log a(m, n)) comparisons and additions, where m and n are the number of edges and vertices, respectively, and a(ra, n) is Tarjan's inverseAckermann function. This improves upon all previous comparison & additionbased APSP algorithms when the graph is sparse, i.e., when m = o(n log n). At the heart of our APSP algorithm is a new singlesource shortest paths algorithm which runs in time O(ma(m,n) + nloglogr) on a pointer machine, where r is the ratio of the maximumtominimum edge length. So long as r < 2 '~°(a) this algorithm is faster than any implementation of Dijkstra's classical algorithm in the comparisonaddition model. For directed graphs we give an O(ra + nlogr)time comparison & additionbased SSSP algorithm on a pointer machine. Similar algorithms assuming integer weights or the RAM model were given earlier.
A shortest path algorithm for realweighted undirected graphs
 in 13th ACMSIAM Symp. on Discrete Algs
, 1985
"... Abstract. We present a new scheme for computing shortest paths on realweighted undirected graphs in the fundamental comparisonaddition model. In an efficient preprocessing phase our algorithm creates a linearsize structure that facilitates singlesource shortest path computations in O(m log α) ti ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
Abstract. We present a new scheme for computing shortest paths on realweighted undirected graphs in the fundamental comparisonaddition model. In an efficient preprocessing phase our algorithm creates a linearsize structure that facilitates singlesource shortest path computations in O(m log α) time, where α = α(m, n) is the very slowly growing inverseAckermann function, m the number of edges, and n the number of vertices. As special cases our algorithm implies new bounds on both the allpairs and singlesource shortest paths problems. We solve the allpairs problem in O(mnlog α(m, n)) time and, if the ratio between the maximum and minimum edge lengths is bounded by n (log n)O(1) , we can solve the singlesource problem in O(m + nlog log n) time. Both these results are theoretical improvements over Dijkstra’s algorithm, which was the previous best for real weighted undirected graphs. Our algorithm takes the hierarchybased approach invented by Thorup. Key words. singlesource shortest paths, allpairs shortest paths, undirected graphs, Dijkstra’s
I/Oefficient undirected shortest paths
 In Proc. 11th Annual European Symposium on Algorithms, volume 2832 of LNCS
, 2003
"... Abstract. We show how to compute singlesource shortest paths in undirected graphs with nonnegative edge lengths in O ( p nm/B log n + MST (n, m)) I/Os, where n is the number of vertices, m is the number of edges, B is the disk block size, and MST (n, m) is the I/Ocost of computing a minimum spann ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
Abstract. We show how to compute singlesource shortest paths in undirected graphs with nonnegative edge lengths in O ( p nm/B log n + MST (n, m)) I/Os, where n is the number of vertices, m is the number of edges, B is the disk block size, and MST (n, m) is the I/Ocost of computing a minimum spanning tree. For sparse graphs, the new algorithm performs O((n / √ B) log n) I/Os. This result removes our previous algorithm’s dependence on the edge lengths in the graph. 1
An experimental study of a parallel shortest path algorithm for solving largescale graph instances
 Ninth Workshop on Algorithm Engineering and Experiments (ALENEX 2007)
, 2007
"... We present an experimental study of the single source shortest path problem with nonnegative edge weights (NSSP) on largescale graphs using the $\Delta$stepping parallel algorithm. We report performance results on the Cray MTA2, a multithreaded parallel computer. The MTA2 is a highend shared m ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
We present an experimental study of the single source shortest path problem with nonnegative edge weights (NSSP) on largescale graphs using the $\Delta$stepping parallel algorithm. We report performance results on the Cray MTA2, a multithreaded parallel computer. The MTA2 is a highend shared memory system offering two unique features that aid the efficient parallel implementation of irregular algorithms: the ability to exploit finegrained parallelism, and lowoverhead synchronization primitives. Our implementation exhibits remarkable parallel speedup when compared with competitive sequential algorithms, for lowdiameter sparse graphs. For instance, $\Delta$stepping on a directed scalefree graph of 100 million vertices and 1 billion edges takes less than ten seconds on 40 processors of the MTA2, with a relative speedup of close to 30. To our knowledge, these are the first performance results of a shortest path problem on realistic graph instances in the order of billions of vertices and edges.