Results 1 
3 of
3
It Is Easy to Determine Whether a Given Integer Is Prime
, 2004
"... The problem of distinguishing prime numbers from composite numbers, and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. It has engaged the industry and wisdom of ancient and modern geometers to such an extent that it would be super ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
The problem of distinguishing prime numbers from composite numbers, and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. It has engaged the industry and wisdom of ancient and modern geometers to such an extent that it would be superfluous to discuss the problem at length. Nevertheless we must confess that all methods that have been proposed thus far are either restricted to very special cases or are so laborious and difficult that even for numbers that do not exceed the limits of tables constructed by estimable men, they try the patience of even the practiced calculator. And these methods do not apply at all to larger numbers... It frequently happens that the trained calculator will be sufficiently rewarded by reducing large numbers to their factors so that it will compensate for the time spent. Further, the dignity of the science itself seems to require that every possible means be explored for the solution of a problem so elegant and so celebrated... It is in the nature of the problem
It Is Easy to Determine Whether a Given Integer Is
, 2005
"... Dedicated to the memory of W. ‘Red ’ Alford, friend and colleague Abstract. “The problem of distinguishing prime numbers from composite numbers, and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. It has engaged the industry and wis ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
Dedicated to the memory of W. ‘Red ’ Alford, friend and colleague Abstract. “The problem of distinguishing prime numbers from composite numbers, and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. It has engaged the industry and wisdom of ancient and modern geometers to such an extent that it would be superfluous to discuss the problem at length. Nevertheless we must confess that all methods that have been proposed thus far are either restricted to very special cases or are so laborious and difficult that even for numbers that do not exceed the limits of tables constructed by estimable men, they try the patience of even the practiced calculator. And these methods do not apply at all to larger numbers... It frequently happens that the trained calculator will be sufficiently rewarded by reducing large numbers to their factors so that it will compensate for the time spent. Further, the dignity of the science itself seems to require that every possible means be explored for the solution of a problem so elegant and so celebrated... It is in the nature of the problem
Computing the eigenvalue in the SchoofElkiesAtkin algorithm using Abelian lifts
"... The SchoofElkiesAtkin algorithm is the best known method for counting the number of points of an elliptic curve defined over a finite field of large characteristic. We use Abelian properties of division polynomials to design a fast theoretical and practical algorithm for finding the eigenvalue. 1. ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
The SchoofElkiesAtkin algorithm is the best known method for counting the number of points of an elliptic curve defined over a finite field of large characteristic. We use Abelian properties of division polynomials to design a fast theoretical and practical algorithm for finding the eigenvalue. 1.