Results 1  10
of
111
Exact Matrix Completion via Convex Optimization
, 2008
"... We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfe ..."
Abstract

Cited by 320 (19 self)
 Add to MetaCart
We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfectly recover most lowrank matrices from what appears to be an incomplete set of entries. We prove that if the number m of sampled entries obeys m ≥ C n 1.2 r log n for some positive numerical constant C, then with very high probability, most n × n matrices of rank r can be perfectly recovered by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold for arbitrary rectangular matrices as well. Our results are connected with the recent literature on compressed sensing, and show that objects other than signals and images can be perfectly reconstructed from very limited information.
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization
, 2007
"... The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative ..."
Abstract

Cited by 218 (15 self)
 Add to MetaCart
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NPhard, because it contains vector cardinality minimization as a special case. In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is sufficiently large. The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this preexisting concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples.
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 192 (12 self)
 Add to MetaCart
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Offtheshelf algorithms such as interior point methods are not directly amenable to large problems of this kind with over a million unknown entries. This paper develops a simple firstorder and easytoimplement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative and produces a sequence of matrices {X k, Y k} and at each step, mainly performs a softthresholding operation on the singular values of the matrix Y k. There are two remarkable features making this attractive for lowrank matrix completion problems. The first is that the softthresholding operation is applied to a sparse matrix; the second is that the rank of the iterates {X k} is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal storage space and keep the computational cost of each iteration low. On
Ranksparsity incoherence for matrix decomposition
, 2009
"... Abstract. Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown lowrank matrix. Our goal is to decompose the given matrix into its sparse and lowrank components. Such a problem arises in a number of applications in model and system identification, and is int ..."
Abstract

Cited by 81 (10 self)
 Add to MetaCart
Abstract. Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown lowrank matrix. Our goal is to decompose the given matrix into its sparse and lowrank components. Such a problem arises in a number of applications in model and system identification, and is intractable to solve in general. In this paper we consider a convex optimization formulation to splitting the specified matrix into its components, by minimizing a linear combination of the ℓ1 norm and the nuclear norm of the components. We develop a notion of ranksparsity incoherence, expressed as an uncertainty principle between the sparsity pattern of a matrix and its row and column spaces, and use it to characterize both fundamental identifiability as well as (deterministic) sufficient conditions for exact recovery. Our analysis is geometric in nature with the tangent spaces to the algebraic varieties of sparse and lowrank matrices playing a prominent role. When the sparse and lowrank matrices are drawn from certain natural random ensembles, we show that the sufficient conditions for exact recovery are satisfied with high probability. We conclude with simulation results on synthetic matrix decomposition problems.
Enhancing Sparsity by Reweighted ℓ1 Minimization
, 2007
"... It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained ℓ1 minimization. In this paper, we study a novel method for sparse signal recovery that in many si ..."
Abstract

Cited by 76 (5 self)
 Add to MetaCart
It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained ℓ1 minimization. In this paper, we study a novel method for sparse signal recovery that in many situations outperforms ℓ1 minimization in the sense that substantially fewer measurements are needed for exact recovery. The algorithm consists of solving a sequence of weighted ℓ1minimization problems where the weights used for the next iteration are computed from the value of the current solution. We present a series of experiments demonstrating the remarkable performance and broad applicability of this algorithm in the areas of sparse signal recovery, statistical estimation, error correction and image processing. Interestingly, superior gains are also achieved when our method is applied to recover signals with assumed nearsparsity in overcomplete representations—not by reweighting the ℓ1 norm of the coefficient sequence as is common, but by reweighting the ℓ1 norm of the transformed object. An immediate consequence is the possibility of highly efficient data acquisition protocols by improving on a technique known as compressed sensing.
Matrix Completion with Noise
"... On the heels of compressed sensing, a remarkable new field has very recently emerged. This field addresses a broad range of problems of significant practical interest, namely, the recovery of a data matrix from what appears to be incomplete, and perhaps even corrupted, information. In its simplest ..."
Abstract

Cited by 74 (4 self)
 Add to MetaCart
On the heels of compressed sensing, a remarkable new field has very recently emerged. This field addresses a broad range of problems of significant practical interest, namely, the recovery of a data matrix from what appears to be incomplete, and perhaps even corrupted, information. In its simplest form, the problem is to recover a matrix from a small sample of its entries, and comes up in many areas of science and engineering including collaborative filtering, machine learning, control, remote sensing, and computer vision to name a few. This paper surveys the novel literature on matrix completion, which shows that under some suitable conditions, one can recover an unknown lowrank matrix from a nearly minimal set of entries by solving a simple convex optimization problem, namely, nuclearnorm minimization subject to data constraints. Further, this paper introduces novel results showing that matrix completion is provably accurate even when the few observed entries are corrupted with a small amount of noise. A typical result is that one can recover an unknown n × n matrix of low rank r from just about nr log 2 n noisy samples with an error which is proportional to the noise level. We present numerical results which complement our quantitative analysis and show that, in practice, nuclear norm minimization accurately fills in the many missing entries of large lowrank matrices from just a few noisy samples. Some analogies between matrix completion and compressed sensing are discussed throughout.
A unified framework for highdimensional analysis of Mestimators with decomposable regularizers
"... ..."
Matrix completion from a few entries
"... Let M be a random nα × n matrix of rank r ≪ n, and assume that a uniformly random subset E of its entries is observed. We describe an efficient algorithm that reconstructs M from E  = O(r n) observed entries with relative root mean square error RMSE ≤ C(α) ..."
Abstract

Cited by 68 (5 self)
 Add to MetaCart
Let M be a random nα × n matrix of rank r ≪ n, and assume that a uniformly random subset E of its entries is observed. We describe an efficient algorithm that reconstructs M from E  = O(r n) observed entries with relative root mean square error RMSE ≤ C(α)
An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
, 2009
"... ..."
A simpler approach to matrix completion
 the Journal of Machine Learning Research
"... This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct an unknown low rank matrix. These results improve on prior work by Candès and Recht [4], Candès and Tao [7], and Keshavan, Montanari, and Oh [18]. The reconstruction is accomplished by minim ..."
Abstract

Cited by 58 (3 self)
 Add to MetaCart
This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct an unknown low rank matrix. These results improve on prior work by Candès and Recht [4], Candès and Tao [7], and Keshavan, Montanari, and Oh [18]. The reconstruction is accomplished by minimizing the nuclear norm, or sum of the singular values, of the hidden matrix subject to agreement with the provided entries. If the underlying matrix satisfies a certain incoherence condition, then the number of entries required is equal to a quadratic logarithmic factor times the number of parameters in the singular value decomposition. The proof of this assertion is short, self contained, and uses very elementary analysis. The novel techniques herein are based on recent work in quantum information theory.