Results 1 
3 of
3
The maximality of the typed lambda calculus and of cartesian closed categories
 Publ. Inst. Math. (N.S
"... From the analogue of Böhm’s Theorem proved for the typed lambda calculus, without product types and with them, it is inferred that every cartesian closed category that satisfies an equality between arrows not satisfied in free cartesian closed categories must be a preorder. A new proof is given here ..."
Abstract

Cited by 18 (1 self)
 Add to MetaCart
From the analogue of Böhm’s Theorem proved for the typed lambda calculus, without product types and with them, it is inferred that every cartesian closed category that satisfies an equality between arrows not satisfied in free cartesian closed categories must be a preorder. A new proof is given here of these results, which were obtained previously by Richard Statman and Alex K. Simpson.
Lectures on the curryhoward isomorphism
, 1998
"... The CurryHoward isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed λcalculus, firstorder logic corresponds to dependent ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
The CurryHoward isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed λcalculus, firstorder logic corresponds to dependent types, secondorder logic corresponds to polymorphic types, etc. The isomorphism has many aspects, even at the syntactic level: formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc. But there is much more to the isomorphism than this. For instance, it is an old idea—due to Brouwer, Kolmogorov, and Heyting, and later formalized by Kleene’s realizability interpretation—that a constructive proof of an implication is a procedure that transforms proofs of the antecedent into proofs of the succedent; the CurryHoward isomorphism gives syntactic representations of such procedures. These notes give an introduction to parts of proof theory and related
The safe lambda calculus
 of Lecture Notes in Computer Science
, 2007
"... Abstract. Safety is a syntactic condition of higherorder grammars that constrains occurrences of variables in the production rules according to their typetheoretic order. In this paper, we introduce the safe lambda calculus, which is obtained by transposing (and generalizing) the safety condition ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Abstract. Safety is a syntactic condition of higherorder grammars that constrains occurrences of variables in the production rules according to their typetheoretic order. In this paper, we introduce the safe lambda calculus, which is obtained by transposing (and generalizing) the safety condition to the setting of the simplytyped lambda calculus. In contrast to the original definition of safety, our calculus does not constrain types (to be homogeneous). We show that in the safe lambda calculus, there is no need to rename bound variables when performing substitution, as variable capture is guaranteed not to happen. We also propose an adequate notion of βreduction that preserves safety. In the same vein as Schwichtenberg’s 1976 characterization of the simplytyped lambda calculus, we show that the numeric functions representable in the safe lambda calculus are exactly the multivariate polynomials; thus conditional is not definable. We also give a characterization of representable word functions. We then study the complexity of deciding betaeta equality of two safe simplytyped terms and show that this problem is PSPACEhard. Finally we give a gamesemantic analysis of safety: We show that safe terms are denoted by Pincrementally justified strategies. Consequently pointers in the game semantics of safe λterms are only necessary from order 4 onwards.