Results 1  10
of
44
A Simple and Fast Incremental Randomized Algorithm for Computing Trapezoidal Decompositions and for Triangulating Polygons
 Comput. Geom. Theory Appl
, 1991
"... This paper presents a very simple incremental randomized algorithm for computing the trapezoidal decomposition induced by a set S of n line segments in the plane. If S is given as a simple polygonal chain the expected running time of the algorithm is O(n log n). This leads to a simple algorithm of t ..."
Abstract

Cited by 99 (2 self)
 Add to MetaCart
This paper presents a very simple incremental randomized algorithm for computing the trapezoidal decomposition induced by a set S of n line segments in the plane. If S is given as a simple polygonal chain the expected running time of the algorithm is O(n log n). This leads to a simple algorithm of the same complexity for triangulating polygons. More generally, if S is presented as a plane graph with k connected components, then the expected running time of the algorithm is O(n log n k log n). As a byproduct our algorithm creates a search structure of expected linear size that allows point location queries in the resulting trapezoidation in logarithmic expected time. The analysis of the expected performance is elementary and straightforward. All expectations are with respect to "coinflips" generated by the algorithm and are not based on assumptions about the geometric distribution of the input. Large Portions of the research reported here were conducted while the author visit...
ExternalMemory Algorithms for Processing Line Segments in Geographic Information Systems
, 2007
"... In the design of algorithms for largescale applications it is essential to consider the problem of minimizing I/O communication. Geographical information systems (GIS) are good examples of such largescale applications as they frequently handle huge amounts of spatial data. In this paper we develop ..."
Abstract

Cited by 76 (30 self)
 Add to MetaCart
In the design of algorithms for largescale applications it is essential to consider the problem of minimizing I/O communication. Geographical information systems (GIS) are good examples of such largescale applications as they frequently handle huge amounts of spatial data. In this paper we develop efficient externalmemory algorithms for a number of important problems involving line segments in the plane, including trapezoid decomposition, batched planar point location, triangulation, red–blue line segment intersection reporting, and general line segment intersection reporting. In GIS systems the first three problems are useful for rendering and modeling, and the latter two are frequently used for overlaying maps and extracting information from them.
Computing Minimum Length Paths of a Given Homotopy Class
 Comput. Geom. Theory Appl
, 1991
"... In this paper, we show that the universal covering space of a surface can be used to unify previous results on computing paths in a simple polygon. We optimize a given path among obstacles in the plane under the Euclidean and link metrics and under polygonal convex distance functions. Besides reveal ..."
Abstract

Cited by 74 (7 self)
 Add to MetaCart
In this paper, we show that the universal covering space of a surface can be used to unify previous results on computing paths in a simple polygon. We optimize a given path among obstacles in the plane under the Euclidean and link metrics and under polygonal convex distance functions. Besides revealing connections between the minimum paths under these three distance functions, the framework provided by the universal cover leads to simplified lineartime algorithms for shortest path trees, for minimumlink paths in simple polygons, and for paths restricted to c given orientations. 1 Introduction If a wire, a pipe, or a robot must traverse a path among obstacles in the plane, then one might ask what is the best route to take. For the wire, perhaps the shortest distance is best; for the pipe, perhaps the fewest straightline segments. For the robot, either might be best depending on the relative costs of turning and moving. In this paper, we find shortest paths and shortest closed curve...
The Robot Localization Problem
 Proc. 1st Workshop on Algorithmic Foundations of Robotics
, 1995
"... We consider the following problem: given a simple polygon P and a starshaped polygon V , find a point (or the set of points) in P from which the portion of P that is visible is translationcongruent to V . The problem arises in the localization of robots equipped with a rangefinder and a compass ..."
Abstract

Cited by 57 (4 self)
 Add to MetaCart
We consider the following problem: given a simple polygon P and a starshaped polygon V , find a point (or the set of points) in P from which the portion of P that is visible is translationcongruent to V . The problem arises in the localization of robots equipped with a rangefinder and a compass  P is a map of a known environment, V is the portion visible from the robot's position, and the robot must use this information to determine its position in the map. We give a scheme that preprocesses P so that any subsequent query V is answered in optimal time O(m + log n + A), where m and n are the number of vertices in V and P , and A is the number of points in P that are valid answers (the output size). Our technique uses O(n 5 ) space and preprocessing in the worst case; within certain limits, we can trade off smoothly between the query time and the preprocessing time and space. In the process of solving this problem, we also devise a data structure for outputsensitive determinati...
Planar Separators and Parallel Polygon Triangulation
, 1992
"... We show how to construct an O( p n)separator decomposition of a planar graph G in O(n) time. Such a decomposition defines a binary tree where each node corresponds to a subgraph of G and stores an O( p n)separator of that subgraph. We also show how to construct an O(n ffl )way decomposition tree ..."
Abstract

Cited by 51 (7 self)
 Add to MetaCart
We show how to construct an O( p n)separator decomposition of a planar graph G in O(n) time. Such a decomposition defines a binary tree where each node corresponds to a subgraph of G and stores an O( p n)separator of that subgraph. We also show how to construct an O(n ffl )way decomposition tree in parallel in O(log n) time so that each node corresponds to a subgraph of G and stores an O(n 1=2+ffl )separator of that subgraph. We demonstrate the utility of such a separator decomposition by showing how it can be used in the design of a parallel algorithm for triangulating a simple polygon deterministically in O(log n) time using O(n= log n) processors on a CRCW PRAM. Keywords: Computational geometry, algorithmic graph theory, planar graphs, planar separators, polygon triangulation, parallel algorithms, PRAM model. 1 Introduction Let G = (V; E) be an nnode graph. An f(n)separator is an f(n)sized subset of V whose removal disconnects G into two subgraphs G 1 and G 2 each...
Efficient ExternalMemory Data Structures and Applications
, 1996
"... In this thesis we study the Input/Output (I/O) complexity of largescale problems arising e.g. in the areas of database systems, geographic information systems, VLSI design systems and computer graphics, and design I/Oefficient algorithms for them. A general theme in our work is to design I/Oeffic ..."
Abstract

Cited by 38 (12 self)
 Add to MetaCart
In this thesis we study the Input/Output (I/O) complexity of largescale problems arising e.g. in the areas of database systems, geographic information systems, VLSI design systems and computer graphics, and design I/Oefficient algorithms for them. A general theme in our work is to design I/Oefficient algorithms through the design of I/Oefficient data structures. One of our philosophies is to try to isolate all the I/O specific parts of an algorithm in the data structures, that is, to try to design I/O algorithms from internal memory algorithms by exchanging the data structures used in internal memory with their external memory counterparts. The results in the thesis include a technique for transforming an internal memory tree data structure into an external data structure which can be used in a batched dynamic setting, that is, a setting where we for example do not require that the result of a search operation is returned immediately. Using this technique we develop batched dynamic external versions of the (onedimensional) rangetree and the segmenttree and we develop an external priority queue. Following our general philosophy we show how these structures can be used in standard internal memory sorting algorithms
AN O(n log log n)TIME ALGORITHM FOR TRIANGULATING A SIMPLE POLYGON
, 1988
"... Given a simple nvertex polygon, the triangulation problem is to partition the interior of the polygon into n2 triangles by adding n3 nonintersecting diagonals. We propose an O(n log logn)time algorithm for this problem, improving on the previously best bound of O (n log n) and showing that tria ..."
Abstract

Cited by 37 (4 self)
 Add to MetaCart
Given a simple nvertex polygon, the triangulation problem is to partition the interior of the polygon into n2 triangles by adding n3 nonintersecting diagonals. We propose an O(n log logn)time algorithm for this problem, improving on the previously best bound of O (n log n) and showing that triangulation is not as hard as sorting. Improved algorithms for several other computational geometry problems, including testing whether a polygon is simple, follow from our result.
Optimal Doubly Logarithmic Parallel Algorithms Based On Finding All Nearest Smaller Values
, 1993
"... The all nearest smaller values problem is defined as follows. Let A = (a 1 ; a 2 ; : : : ; an ) be n elements drawn from a totally ordered domain. For each a i , 1 i n, find the two nearest elements in A that are smaller than a i (if such exist): the left nearest smaller element a j (with j ! i) a ..."
Abstract

Cited by 37 (7 self)
 Add to MetaCart
The all nearest smaller values problem is defined as follows. Let A = (a 1 ; a 2 ; : : : ; an ) be n elements drawn from a totally ordered domain. For each a i , 1 i n, find the two nearest elements in A that are smaller than a i (if such exist): the left nearest smaller element a j (with j ! i) and the right nearest smaller element a k (with k ? i). We give an O(log log n) time optimal parallel algorithm for the problem on a CRCW PRAM. We apply this algorithm to achieve optimal O(log log n) time parallel algorithms for four problems: (i) Triangulating a monotone polygon, (ii) Preprocessing for answering range minimum queries in constant time, (iii) Reconstructing a binary tree from its inorder and either preorder or postorder numberings, (vi) Matching a legal sequence of parentheses. We also show that any optimal CRCW PRAM algorithm for the triangulation problem requires \Omega\Gammauir log n) time. Dept. of Computing, King's College London, The Strand, London WC2R 2LS, England. ...
ExternalMemory Algorithms with Applications in Geographic Information Systems
 Algorithmic Foundations of GIS
, 1997
"... In the design of algorithms for largescale applications it is essential to consider the problem of minimizing Input/Output (I/O) communication. Geographical information systems (GIS) are good examples of such largescale applications as they frequently handle huge amounts of spatial data. In this n ..."
Abstract

Cited by 27 (9 self)
 Add to MetaCart
In the design of algorithms for largescale applications it is essential to consider the problem of minimizing Input/Output (I/O) communication. Geographical information systems (GIS) are good examples of such largescale applications as they frequently handle huge amounts of spatial data. In this note we survey the recent developments in externalmemory algorithms with applications in GIS. First we discuss the AggarwalVitter I/Omodel and illustrate why normal internalmemory algorithms for even very simple problems can perform terribly in an I/Oenvironment. Then we describe the fundamental paradigms for designing I/Oefficient algorithms by using them to design efficient sorting algorithms. We then go on and survey externalmemory algorithms for computational geometry problems  with special emphasis on problems with applications in GIS  and techniques for designing such algorithms: Using the orthogonal line segment intersection problem we illustrate the distributionsweeping and ...
COMPUTING MULTIVARIATE FEKETE AND LEJA POINTS BY NUMERICAL LINEAR ALGEBRA ∗
"... Abstract. We discuss and compare two greedy algorithms, that compute discrete versions of Feketelike points for multivariate compact sets by basic tools of numerical linear algebra. The first gives the socalled “Approximate Fekete Points ” by QR factorization with column pivoting of Vandermondeli ..."
Abstract

Cited by 18 (16 self)
 Add to MetaCart
Abstract. We discuss and compare two greedy algorithms, that compute discrete versions of Feketelike points for multivariate compact sets by basic tools of numerical linear algebra. The first gives the socalled “Approximate Fekete Points ” by QR factorization with column pivoting of Vandermondelike matrices. The second computes Discrete Leja Points by LU factorization with row pivoting. Moreover, we study the asymptotic distribution of such points when they are extracted