Results 1  10
of
35
Complementarity and Nondegeneracy in Semidefinite Programming
, 1995
"... Primal and dual nondegeneracy conditions are defined for semidefinite programming. Given the existence of primal and dual solutions, it is shown that primal nondegeneracy implies a unique dual solution and that dual nondegeneracy implies a unique primal solution. The converses hold if strict complem ..."
Abstract

Cited by 103 (9 self)
 Add to MetaCart
Primal and dual nondegeneracy conditions are defined for semidefinite programming. Given the existence of primal and dual solutions, it is shown that primal nondegeneracy implies a unique dual solution and that dual nondegeneracy implies a unique primal solution. The converses hold if strict complementarity is assumed. Primal and dual nondegeneracy assumptions do not imply strict complementarity, as they do in LP. The primal and dual nondegeneracy assumptions imply a range of possible ranks for primal and dual solutions X and Z. This is in contrast with LP where nondegeneracy assumptions exactly determine the number of variables which are zero. It is shown that primal and dual nondegeneracy and strict complementarity all hold generically. Numerical experiments suggest probability distributions for the ranks of X and Z which are consistent with the nondegeneracy conditions.
The Mathematics Of Eigenvalue Optimization
, 2003
"... Optimization problems involving the eigenvalues of symmetric and nonsymmetric matrices present a fascinating mathematical challenge. Such problems arise often in theory and practice, particularly in engineering design, and are amenable to a rich blend of classical mathematical techniques and contemp ..."
Abstract

Cited by 92 (13 self)
 Add to MetaCart
Optimization problems involving the eigenvalues of symmetric and nonsymmetric matrices present a fascinating mathematical challenge. Such problems arise often in theory and practice, particularly in engineering design, and are amenable to a rich blend of classical mathematical techniques and contemporary optimization theory. This essay presents a personal choice of some central mathematical ideas, outlined for the broad optimization community. I discuss the convex analysis of spectral functions and invariant matrix norms, touching briey on semide nite representability, and then outlining two broader algebraic viewpoints based on hyperbolic polynomials and Lie algebra. Analogous nonconvex notions lead into eigenvalue perturbation theory. The last third of the article concerns stability, for polynomials, matrices, and associated dynamical systems, ending with a section on robustness. The powerful and elegant language of nonsmooth analysis appears throughout, as a unifying narrative thread.
Robust Solutions To Uncertain Semidefinite Programs
 SIAM J. OPTIMIZATION
, 1998
"... In this paper we consider semidefinite programs (SDPs) whose data depend on some unknown but bounded perturbation parameters. We seek "robust" solutions to such programs, that is, solutions which minimize the (worstcase) objective while satisfying the constraints for every possible value of paramet ..."
Abstract

Cited by 82 (8 self)
 Add to MetaCart
In this paper we consider semidefinite programs (SDPs) whose data depend on some unknown but bounded perturbation parameters. We seek "robust" solutions to such programs, that is, solutions which minimize the (worstcase) objective while satisfying the constraints for every possible value of parameters within the given bounds. Assuming the data matrices are rational functions of the perturbation parameters, we show how to formulate sufficient conditions for a robust solution to exist as SDPs. When the perturbation is "full," our conditions are necessary and sufficient. In this case, we provide sufficient conditions which guarantee that the robust solution is unique and continuous (Hölderstable) with respect to the unperturbed problem's data. The approach can thus be used to regularize illconditioned SDPs. We illustrate our results with examples taken from linear programming, maximum norm minimization, polynomial interpolation, and integer programming.
ON THE RANK OF EXTREME MATRICES IN SEMIDEFINITE PROGRAMS AND THE MULTIPLICITY OF OPTIMAL EIGENVALUES
, 1998
"... We derive some basic results on the geometry of semidefinite programming (SDP) and eigenvalueoptimization, i.e., the minimization of the sum of the k largest eigenvalues of a smooth matrixvalued function. We provide upper bounds on the rank of extreme matrices in SDPs, and the first theoretically ..."
Abstract

Cited by 70 (1 self)
 Add to MetaCart
We derive some basic results on the geometry of semidefinite programming (SDP) and eigenvalueoptimization, i.e., the minimization of the sum of the k largest eigenvalues of a smooth matrixvalued function. We provide upper bounds on the rank of extreme matrices in SDPs, and the first theoretically solid explanation of a phenomenon of intrinsic interest in eigenvalueoptimization. In the spectrum of an optimal matrix, the kth and (k / 1)st largest eigenvalues tend to be equal and frequently have multiplicity greater than two. This clustering is intuitively plausible and has been observed as early as 1975. When the matrixvalued function is affine, we prove that clustering must occur at extreme points of the set of optimal solutions, if the number of variables is sufficiently large. We also give a lower bound on the multiplicity of the critical eigenvalue. These results generalize to the case of a general matrixvalued function under appropriate conditions.
Robust Solutions To Uncertain Semidefinite Programs
, 1998
"... In this paper we consider semidenite programs (SDPs) whose data depends on some unknownbutbounded perturbation parameters. We seek "robust" solutions to such programs, that is, solutions which minimize the (worstcase) objective while satisfying the constraints for every possible values of paramet ..."
Abstract

Cited by 57 (2 self)
 Add to MetaCart
In this paper we consider semidenite programs (SDPs) whose data depends on some unknownbutbounded perturbation parameters. We seek "robust" solutions to such programs, that is, solutions which minimize the (worstcase) objective while satisfying the constraints for every possible values of parameters within the given bounds. Assuming the data matrices are rational functions of the perturbation parameters, we show how to formulate sufficient conditions for a robust solution to exist, as SDPs. When the perturbation is "full", our conditions are necessary and sufficient. In this case, we provide sufficient conditions which guarantee that the robust solution is unique, and continuous (Hölderstable) with respect to the unperturbed problems' data. The approach can thus be used to regularize illconditioned SDPs. We illustrate our results with examples taken from linear programming, maximum norm minimization, polynomial interpolation and integer programming.
Derivatives of Spectral Functions
, 1996
"... A spectral function of a Hermitian matrix X is a function which depends only on the eigenvalues of X , 1 (X) 2 (X) : : : n (X), and hence may be written f( 1 (X); 2 (X); : : : ; n (X)) for some symmetric function f . Such functions appear in a wide variety of matrix optimization problems. We ..."
Abstract

Cited by 48 (13 self)
 Add to MetaCart
A spectral function of a Hermitian matrix X is a function which depends only on the eigenvalues of X , 1 (X) 2 (X) : : : n (X), and hence may be written f( 1 (X); 2 (X); : : : ; n (X)) for some symmetric function f . Such functions appear in a wide variety of matrix optimization problems. We give a simple proof that this spectral function is differentiable at X if and only if the function f is differentiable at the vector (X), and we give a concise formula for the derivative. We then apply this formula to deduce an analogous expression for the Clarke generalized gradient of the spectral function. A similar result holds for real symmetric matrices. 1 Introduction and notation Optimization problems involving a symmetric matrix variable, X say, frequently involve symmetric functions of the eigenvalues of X in the objective or constraints. Examples include the maximum eigenvalue of X, or log(det X) (for positive definite X), or eigenvalue constraints such as positive semidefinit...
First and Second Order Analysis of Nonlinear Semidefinite Programs
 Mathematical Programming
, 1997
"... In this paper we study nonlinear semidefinite programming problems. Convexity, duality and firstorder optimality conditions for such problems are presented. A secondorder analysis is also given. Secondorder necessary and sufficient optimality conditions are derived. Finally, sensitivity analysi ..."
Abstract

Cited by 47 (11 self)
 Add to MetaCart
In this paper we study nonlinear semidefinite programming problems. Convexity, duality and firstorder optimality conditions for such problems are presented. A secondorder analysis is also given. Secondorder necessary and sufficient optimality conditions are derived. Finally, sensitivity analysis of such programs is discussed. Key words: Semidefinite programming, cone constraints, convex programming, duality, secondorder optimality conditions, tangent cones, optimal value function, sensitivity analysis. AMS subject classification: 90C25, 90C30, 90C31 1 Introduction In this paper we consider the following optimization problem (P ) min x2IR m f(x) subject to G(x) 0: Here G : IR m ! S n is a mapping from IR m into the space S n of n \Theta n symmetric matrices and, for A; B 2 S n , the notation A B (the notation A B) means that the matrix A \Gamma B is positive semidefinite (negative semidefinite). Consider the cone K ae S n of positive semidefinite matrices. Then the co...
Convex analysis on the Hermitian matrices
 SIAM Journal on Optimization
, 1996
"... There is growing interest in optimization problems with real symmetric matrices as variables. Generally the matrix functions involved are spectral: they depend only on the eigenvalues of the matrix. It is known that convex spectral functions can be characterized exactly as symmetric convex functions ..."
Abstract

Cited by 45 (20 self)
 Add to MetaCart
There is growing interest in optimization problems with real symmetric matrices as variables. Generally the matrix functions involved are spectral: they depend only on the eigenvalues of the matrix. It is known that convex spectral functions can be characterized exactly as symmetric convex functions of the eigenvalues. A new approach to this characterization is given, via a simple Fenchel conjugacy formula. We then apply this formula to derive expressions for subdifferentials, and to study duality relationships for convex optimization problems with positive semidefinite matrices as variables. Analogous results hold for Hermitian matrices. Key Words: convexity, matrix function, Schur convexity, Fenchel duality, subdifferential, unitarily invariant, spectral function, positive semidefinite programming, quasiNewton update. AMS 1991 Subject Classification: Primary 15A45 49N15 Secondary 90C25 65K10 1 Introduction A matrix norm on the n \Theta n complex matrices is called unitarily inv...
Bundle Methods to Minimize the Maximum Eigenvalue Function
, 1999
"... this paper. 1.9.1 The spectral bundle method ..."