Results 1  10
of
92
A rigorous framework for optimization of expensive functions by surrogates
 STRUCTURAL OPTIMIZATION
, 1999
"... The goal of the research reported here is to develop rigorous optimization algorithms to apply to some engineering design problems for which direct application of traditional optimization approaches is not practical. This paper presents and analyzes a framework for generating a sequence of approxi ..."
Abstract

Cited by 200 (16 self)
 Add to MetaCart
The goal of the research reported here is to develop rigorous optimization algorithms to apply to some engineering design problems for which direct application of traditional optimization approaches is not practical. This paper presents and analyzes a framework for generating a sequence of approximations to the objective function and managing the use of these approximations as surrogates for optimization. The result is to obtain convergence to a minimizer of an expensive objective function subject to simple constraints. The approach is widely applicable because it does not require, or even explicitly approximate, derivatives of the objective. Numerical results are presented for a 31variable helicopter rotor blade design example and for a standard optimization test example.
Computer Experiments
, 1996
"... Introduction Deterministic computer simulations of physical phenomena are becoming widely used in science and engineering. Computers are used to describe the flow of air over an airplane wing, combustion of gasses in a flame, behavior of a metal structure under stress, safety of a nuclear reactor, a ..."
Abstract

Cited by 119 (6 self)
 Add to MetaCart
Introduction Deterministic computer simulations of physical phenomena are becoming widely used in science and engineering. Computers are used to describe the flow of air over an airplane wing, combustion of gasses in a flame, behavior of a metal structure under stress, safety of a nuclear reactor, and so on. Some of the most widely used computer models, and the ones that lead us to work in this area, arise in the design of the semiconductors used in the computers themselves. A process simulator starts with a data structure representing an unprocessed piece of silicon and simulates the steps such as oxidation, etching and ion injection that produce a semiconductor device such as a transistor. A device simulator takes a description of such a device and simulates the flow of current through it under varying conditions to determine properties of the device such as its switching speed and the critical voltage at which it switches. A circuit simulator takes a list of devices and the
Latin Hypercube Sampling and the propagation of uncertainty in analyses of complex systems,” Reliability Engineering and System Safety
, 2003
"... ..."
Valuation of Mortgage Backed Securities Using Brownian Bridges to Reduce Effective Dimension
, 1997
"... The quasiMonte Carlo method for financial valuation and other integration problems has error bounds of size O((log N) k N \Gamma1 ), or even O((log N) k N \Gamma3=2 ), which suggests significantly better performance than the error size O(N \Gamma1=2 ) for standard Monte Carlo. But in hig ..."
Abstract

Cited by 100 (15 self)
 Add to MetaCart
The quasiMonte Carlo method for financial valuation and other integration problems has error bounds of size O((log N) k N \Gamma1 ), or even O((log N) k N \Gamma3=2 ), which suggests significantly better performance than the error size O(N \Gamma1=2 ) for standard Monte Carlo. But in high dimensional problems this benefit might not appear at feasible sample sizes. Substantial improvements from quasiMonte Carlo integration have, however, been reported for problems such as the valuation of mortgagebacked securities, in dimensions as high as 360. We believe that this is due to a lower effective dimension of the integrand in those cases. This paper defines the effective dimension and shows in examples how the effective dimension may be reduced by using a Brownian bridge representation. 1 Introduction Simulation is often the only effective numerical method for the accurate valuation of securities whose value depends on the whole trajectory of interest Mathematics Departmen...
Filter Pattern Search Algorithms for Mixed Variable Constrained Optimization Problems
 SIAM Journal on Optimization
, 2004
"... A new class of algorithms for solving nonlinearly constrained mixed variable optimization problems is presented. This class combines and extends the AudetDennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPSfilter algorithms for gene ..."
Abstract

Cited by 55 (8 self)
 Add to MetaCart
(Show Context)
A new class of algorithms for solving nonlinearly constrained mixed variable optimization problems is presented. This class combines and extends the AudetDennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPSfilter algorithms for general nonlinear constraints. In generalizing existing algorithms, new theoretical convergence results are presented that reduce seamlessly to existing results for more specific classes of problems. While no local continuity or smoothness assumptions are required to apply the algorithm, a hierarchy of theoretical convergence results based on the Clarke calculus is given, in which local smoothness dictate what can be proved about certain limit points generated by the algorithm. To demonstrate the usefulness of the algorithm, the algorithm is applied to the design of a loadbearing thermal insulation system. We believe this is the first algorithm with provable convergence results to directly target this class of problems.
Methods for Approximating Integrals in Statistics with Special Emphasis on Bayesian Integration Problems
 Statistical Science
"... This paper is a survey of the major techniques and approaches available for the numerical approximation of integrals in statistics. We classify these into five broad categories; namely, asymptotic methods, importance sampling, adaptive importance sampling, multiple quadrature and Markov chain method ..."
Abstract

Cited by 49 (5 self)
 Add to MetaCart
This paper is a survey of the major techniques and approaches available for the numerical approximation of integrals in statistics. We classify these into five broad categories; namely, asymptotic methods, importance sampling, adaptive importance sampling, multiple quadrature and Markov chain methods. Each method is discussed giving an outline of the basic supporting theory and particular features of the technique. Conclusions are drawn concerning the relative merits of the methods based on the discussion and their application to three examples. The following broad recommendations are made. Asymptotic methods should only be considered in contexts where the integrand has a dominant peak with approximate ellipsoidal symmetry. Importance sampling, and preferably adaptive importance sampling, based on a multivariate Student should be used instead of asymptotics methods in such a context. Multiple quadrature, and in particular subregion adaptive integration, are the algorithms of choice for...
Monte Carlo variance of scrambled net quadrature
 SIAM Journal on Numerical Analysis
, 1997
"... ..."
(Show Context)
Sampling Strategies for Computer Experiments: Design and Analysis
, 2001
"... Computerbased simulation and analysis is used extensively in engineering for a variety of tasks. Despite the steady and continuing growth of computing power and speed, the computational cost of complex highfidelity engineering analyses and simulations limit their use in important areas like design ..."
Abstract

Cited by 42 (2 self)
 Add to MetaCart
Computerbased simulation and analysis is used extensively in engineering for a variety of tasks. Despite the steady and continuing growth of computing power and speed, the computational cost of complex highfidelity engineering analyses and simulations limit their use in important areas like design optimization and reliability analysis. Statistical approximation techniques such as design of experiments and response surface methodology are becoming widely used in engineering to minimize the computational expense of running such computer analyses and circumvent many of these limitations. In this paper, we compare and contrast five experimental design types and four approximation model types in terms of their capability to generate accurate approximations for two engineering applications with typical engineering behaviors and a wide range of nonlinearity. The first example involves the analysis of a twomember frame that has three input variables and three responses of interest. The second example simulates the rollover potential of a semitractortrailer for different combinations of input variables and braking and steering levels. Detailed error analysis reveals that uniform designs provide good sampling for generating accurate approximations using different sample sizes while kriging models provide accurate approximations that are robust for use with a variety of experimental designs and sample sizes.
Algorithmic construction of optimal symmetric Latin hypercube designs
 JOURNAL OF STATISTICAL PLANNING AND INFERENCES
, 2000
"... We propose symmetric Latin hypercubes for designs of computer exepriment. The goal is to offer a compromise between computing effort and design optimality. The proposed class of designs has some advantages over the regular Latin hypercube design with respect to criteria such as entropy and the minim ..."
Abstract

Cited by 29 (1 self)
 Add to MetaCart
We propose symmetric Latin hypercubes for designs of computer exepriment. The goal is to offer a compromise between computing effort and design optimality. The proposed class of designs has some advantages over the regular Latin hypercube design with respect to criteria such as entropy and the minimum intersite distance. An exchange algorithm is proposed for constructing optimal symmetric Latin hypercube designs. This algorithm is compared with two existing algorithms by Park (1994) and Morris and Mitchell (1995). Some examples, including a real case study in the automotive industry, are used to illustrate the performance of the new designs and the algorithms.
Bayesian Hierarchical Modeling for Integrating LowAccuracy and HighAccuracy Experiments
 Technometrics
, 2008
"... Standard practice in analyzing data from different types of experiments is to treat data from each type separately. By borrowing strength across multiple sources, an integrated analysis can produce better results. Careful adjustments need to be made to incorporate the systematic differences among va ..."
Abstract

Cited by 29 (2 self)
 Add to MetaCart
Standard practice in analyzing data from different types of experiments is to treat data from each type separately. By borrowing strength across multiple sources, an integrated analysis can produce better results. Careful adjustments need to be made to incorporate the systematic differences among various experiments. To this end, some Bayesian hierarchical Gaussian process models (BHGP) are proposed. The heterogeneity among different sources is accounted for by performing flexible location and scale adjustments. The approach tends to produce prediction closer to that from the highaccuracy experiment. The Bayesian computations are aided by the use of Markov chain Monte Carlo and Sample Average Approximation algorithms. The proposed method is illustrated with two examples: one with detailed and approximate finite elements simulations for mechanical material design and the other with physical and computer experiments for modeling a food processor.