Results 1  10
of
314
Distance Metric Learning, With Application To Clustering With SideInformation
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15
, 2003
"... Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the user to man ..."
Abstract

Cited by 505 (11 self)
 Add to MetaCart
Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the user to manually tweak the metric until sufficiently good clusters are found. For these and other applications requiring good metrics, it is desirable that we provide a more systematic way for users to indicate what they consider "similar." For instance, we may ask them to provide examples. In this paper, we present an algorithm that, given examples of similar (and, if desired, dissimilar) pairs of points in R , learns a distance metric over R that respects these relationships. Our method is based on posing metric learning as a convex optimization problem, which allows us to give efficient, localoptimafree algorithms. We also demonstrate empirically that the learned metrics can be used to significantly improve clustering performance.
Searching in Metric Spaces
, 1999
"... The problem of searching the elements of a set which are close to a given query element under some similarity criterion has a vast number of applications in many branches of computer science, from pattern recognition to textual and multimedia information retrieval. We are interested in the rather ge ..."
Abstract

Cited by 321 (34 self)
 Add to MetaCart
The problem of searching the elements of a set which are close to a given query element under some similarity criterion has a vast number of applications in many branches of computer science, from pattern recognition to textual and multimedia information retrieval. We are interested in the rather general case where the similarity criterion defines a metric space, instead of the more restricted case of a vector space. A large number of solutions have been proposed in different areas, in many cases without crossknowledge. Because of this, the same ideas have been reinvented several times, and very different presentations have been given for the same approaches. We
Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds
 Journal of Machine Learning Research
, 2003
"... The problem of dimensionality reduction arises in many fields of information processing, including machine learning, data compression, scientific visualization, pattern recognition, and neural computation. ..."
Abstract

Cited by 252 (8 self)
 Add to MetaCart
The problem of dimensionality reduction arises in many fields of information processing, including machine learning, data compression, scientific visualization, pattern recognition, and neural computation.
Unsupervised Learning of Image Manifolds by Semidefinite Programming
, 2004
"... Can we detect low dimensional structure in high dimensional data sets of images and video? The problem of dimensionality reduction arises often in computer vision and pattern recognition. In this paper, we propose a new solution to this problem based on semidefinite programming. Our algorithm can be ..."
Abstract

Cited by 162 (9 self)
 Add to MetaCart
Can we detect low dimensional structure in high dimensional data sets of images and video? The problem of dimensionality reduction arises often in computer vision and pattern recognition. In this paper, we propose a new solution to this problem based on semidefinite programming. Our algorithm can be used to analyze high dimensional data that lies on or near a low dimensional manifold. It overcomes certain limitations of previous work in manifold learning, such as Isomap and locally linear embedding. We illustrate the algorithm on easily visualized examples of curves and surfaces, as well as on actual images of faces, handwritten digits, and solid objects.
Learning a distance metric from relative comparisons
 In Proceedings of Neural Information Processing Systems
, 2004
"... This paper presents a method for learning a distance metric from relative comparison such as “A is closer to B than A is to C”. Taking a Support Vector Machine (SVM) approach, we develop an algorithm that provides a flexible way of describing qualitative training data as a set of constraints. We sho ..."
Abstract

Cited by 120 (0 self)
 Add to MetaCart
This paper presents a method for learning a distance metric from relative comparison such as “A is closer to B than A is to C”. Taking a Support Vector Machine (SVM) approach, we develop an algorithm that provides a flexible way of describing qualitative training data as a set of constraints. We show that such constraints lead to a convex quadratic programming problem that can be solved by adapting standard methods for SVM training. We empirically evaluate the performance and the modelling flexibility of the algorithm on a collection of text documents. 1
SemiSupervised Classification by Low Density Separation
, 2005
"... We believe that the cluster assumption is key to successful semisupervised learning. Based on this, we propose three semisupervised algorithms: 1. deriving graphbased distances that emphazise low density regions between clusters, followed by training a standard SVM; 2. optimizing the Transd ..."
Abstract

Cited by 120 (9 self)
 Add to MetaCart
We believe that the cluster assumption is key to successful semisupervised learning. Based on this, we propose three semisupervised algorithms: 1. deriving graphbased distances that emphazise low density regions between clusters, followed by training a standard SVM; 2. optimizing the Transductive SVM objective function, which places the decision boundary in low density regions, by gradient descent; 3. combining the first two to make maximum use of the cluster assumption. We compare with state of the art algorithms and demonstrate superior accuracy for the latter two methods.
Stochastic Neighbor Embedding
 Advances in Neural Information Processing Systems 15
"... We describe a probabilistic approach to the task of placing objects, described by highdimensional vectors or by pairwise dissimilarities, in a lowdimensional space in a way that preserves neighbor identities. A Gaussian is centered on each object in the highdimensional space and the densities ..."
Abstract

Cited by 118 (9 self)
 Add to MetaCart
We describe a probabilistic approach to the task of placing objects, described by highdimensional vectors or by pairwise dissimilarities, in a lowdimensional space in a way that preserves neighbor identities. A Gaussian is centered on each object in the highdimensional space and the densities under this Gaussian (or the given dissimilarities) are used to define a probability distribution over all the potential neighbors of the object. The aim of the embedding is to approximate this distribution as well as possible when the same operation is performed on the lowdimensional "images" of the objects. A natural cost function is a sum of KullbackLeibler divergences, one per object, which leads to a simple gradient for adjusting the positions of the lowdimensional images.
Partial and approximate symmetry detection for 3D geometry
 ACM TRANSACTIONS ON GRAPHICS
, 2006
"... “Symmetry is a complexityreducing concept [...]; seek it everywhere.” Alan J. Perlis Many natural and manmade objects exhibit significant symmetries or contain repeated substructures. This paper presents a new algorithm that processes geometric models and efficiently discovers and extracts a com ..."
Abstract

Cited by 112 (17 self)
 Add to MetaCart
“Symmetry is a complexityreducing concept [...]; seek it everywhere.” Alan J. Perlis Many natural and manmade objects exhibit significant symmetries or contain repeated substructures. This paper presents a new algorithm that processes geometric models and efficiently discovers and extracts a compact representation of their Euclidean symmetries. These symmetries can be partial, approximate, or both. The method is based on matching simple local shape signatures in pairs and using these matches to accumulate evidence for symmetries in an appropriate transformation space. A clustering stage extracts potential significant symmetries of the object, followed by a verification step. Based on a statistical sampling analysis, we provide theoretical guarantees on the success rate of our algorithm. The extracted symmetry graph representation captures important highlevel information about the structure of a geometric model which in turn enables a large set of further processing operations, including shape compression, segmentation, consistent editing, symmetrization, indexing for retrieval, etc.
A Kernel View Of The Dimensionality Reduction Of Manifolds
, 2003
"... We interpret several wellknown algorithms for dimensionality reduction of manifolds as kernel methods. Isomap, graph Laplacian eigenmap, and locally linear embedding (LLE) all utilize local neighborhood information to construct a global embedding of the manifold. We show how all three algorithm ..."
Abstract

Cited by 110 (7 self)
 Add to MetaCart
We interpret several wellknown algorithms for dimensionality reduction of manifolds as kernel methods. Isomap, graph Laplacian eigenmap, and locally linear embedding (LLE) all utilize local neighborhood information to construct a global embedding of the manifold. We show how all three algorithms can be described as kernel PCA on specially constructed Gram matrices, and illustrate the similarities and differences between the algorithms with representative examples.
QOM – Quick ontology mapping
 In Proc. 3rd International Semantic Web Conference (ISWC04
, 2004
"... Abstract. (Semi)automatic mapping — also called (semi)automatic alignment — of ontologies is a core task to achieve interoperability when two agents or services use different ontologies. In the existing literature, the focus has so far been on improving the quality of mapping results. We here cons ..."
Abstract

Cited by 107 (9 self)
 Add to MetaCart
Abstract. (Semi)automatic mapping — also called (semi)automatic alignment — of ontologies is a core task to achieve interoperability when two agents or services use different ontologies. In the existing literature, the focus has so far been on improving the quality of mapping results. We here consider QOM, Quick Ontology Mapping, as a way to trade off between effectiveness (i.e. quality) and efficiency of the mapping generation algorithms. We show that QOM has lower runtime complexity than existing prominent approaches. Then, we show in experiments that this theoretical investigation translates into practical benefits. While QOM gives up some of the possibilities for producing highquality results in favor of efficiency, our experiments show that this loss of quality is marginal. 1