Results 1  10
of
129
Adaptive clustering for mobile wireless networks
 IEEE Journal on Selected Areas in Communications
, 1997
"... This paper describes a selforganizing, multihop, mobile radio network, which relies on a code division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled and are dynamically reconfig ..."
Abstract

Cited by 415 (7 self)
 Add to MetaCart
This paper describes a selforganizing, multihop, mobile radio network, which relies on a code division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled and are dynamically reconfigured as nodes move. This network architecture has three main advantages. First, it provides spatial reuse of the bandwidth due to node clustering. Secondly, bandwidth can be shared or reserved in a controlled fashion in each cluster. Finally, the cluster algorithm is robust in the face of topological changes caused by node motion, node failure and node insertion/removal. Simulation shows that this architecture provides an efficient, stable infrastructure for the integration of different types of traffic in a dynamic radio network. 1.
A Survey on PositionBased Routing in Mobile AdHoc Networks
 IEEE Network
, 2001
"... We present an overview of adhoc routing protocols that make forwarding decisions based on the geographical position of a packet's destination. Other than the destination 's position, each node needs to know only its own position and the position of its onehop neighbors in order to forward packets. ..."
Abstract

Cited by 355 (14 self)
 Add to MetaCart
We present an overview of adhoc routing protocols that make forwarding decisions based on the geographical position of a packet's destination. Other than the destination 's position, each node needs to know only its own position and the position of its onehop neighbors in order to forward packets. Since it is not necessary to maintain explicit routes, positionbased routing does scale well even if the network is highly dynamic. This is a major advantage in a mobile adhoc network where the topology may change frequently. The main prerequisite for positionbased routing is that a sender can obtain the current position of the destination. Therefore, recently proposed location services are discussed in addition to positionbased packet forwarding strategies. We provide a qualitative comparison of the approaches in both areas and investigate opportunities for future research.
Geometric AdHoc Routing: Of Theory and Practice
, 2003
"... All too often a seemingly insurmountable divide between theory and practice can be witnessed. In this paper we try to contribute to narrowing this gap in the field of adhoc routing. In particular we consider two aspects: We propose a new geometric routing algorithm which is outstandingly e#cient on ..."
Abstract

Cited by 236 (11 self)
 Add to MetaCart
All too often a seemingly insurmountable divide between theory and practice can be witnessed. In this paper we try to contribute to narrowing this gap in the field of adhoc routing. In particular we consider two aspects: We propose a new geometric routing algorithm which is outstandingly e#cient on practical averagecase networks, however is also in theory asymptotically worstcase optimal. On the other hand we are able to drop the formerly necessary assumption that the distance between network nodes may not fall below a constant value, an assumption that cannot be maintained for practical networks. Abandoning this assumption we identify from a theoretical point of view two fundamentamentally di#erent classes of cost metrics for routing in adhoc networks.
PowerAware Localized Routing in Wireless Networks
, 2000
"... Recently, a cost aware metric for wireless networks based on remaining battery power at nodes was proposed for shortestcost routing algorithms, assuming constant transmission power. Power aware metrics where transmission power depends on distance between nodes, and corresponding shortestpower algo ..."
Abstract

Cited by 205 (32 self)
 Add to MetaCart
Recently, a cost aware metric for wireless networks based on remaining battery power at nodes was proposed for shortestcost routing algorithms, assuming constant transmission power. Power aware metrics where transmission power depends on distance between nodes, and corresponding shortestpower algorithms were also recently proposed. We define a new powercost metric based on the combination of both node's lifetime and distance based power metrics. We investigate some properties of power adjusted transmissions, and show that, if additional nodes can be placed at desired locations between two nodes at distance d, the transmission power can be made linear in d as opposed to d a dependence for a2. This provides basis for power, cost, and powercost localized routing algorithms, where nodes make routing decisions solely on the basis of location of their neighbors and destination. Power aware routing algorithm attempts to minimize the total power needed to route a message between a source...
Joint Scheduling and Power Control for Wireless Adhoc Networks
, 2002
"... In this pape we introduce powe r control as a solution tothe multiple accel proble in conte tionbase wirenb adhocne works.The motivation for this study is two fold, limiting multiuse intej toincre single hop throughput, andrej powe r consumption to increj batte life We focus onne ne bor transmi ..."
Abstract

Cited by 189 (5 self)
 Add to MetaCart
In this pape we introduce powe r control as a solution tothe multiple accel proble in conte tionbase wirenb adhocne works.The motivation for this study is two fold, limiting multiuse intej toincre single hop throughput, andrej powe r consumption to increj batte life We focus onne ne bor transmissions whes node are rej tose information packe  tothe re e e re e sub jej to a constraint on the signaltointealtoinjj ratio.The multiple acce  proble is solve via twoaltej phase name schej and powe r control.The sche algorithm isej tial to coordinate the transmissions ofinde ede t use inorde toejj strong intej (e.g selfinterference) that can not be ove by powe r control. On the othe hand, powe r control isej in adistribute fashion to dej the admissible powe r ve ifone ene that can be use bythe sche use to satisfy thei singlej transmissionrensmissi ts. This isdone for two type s ofne works, namej TDMA and TDMA/CDMA wire/CD adhocne works.
WorstCase Optimal and AverageCase Efficient Geometric AdHoc Routing
, 2003
"... In this paper we present GOAFR, a new geometric adhoc routing algorithm combining greedy and face routing. We evaluate this algorithm by both rigorous analysis and comprehensive simulation. GOAFR is the first adhoc algorithm to be both asymptotically optimal and averagecase e#cient. For our simul ..."
Abstract

Cited by 180 (13 self)
 Add to MetaCart
In this paper we present GOAFR, a new geometric adhoc routing algorithm combining greedy and face routing. We evaluate this algorithm by both rigorous analysis and comprehensive simulation. GOAFR is the first adhoc algorithm to be both asymptotically optimal and averagecase e#cient. For our simulations we identify a network density range critical for any routing algorithm. We study a dozen of routing algorithms and show that GOAFR outperforms other prominent algorithms, such as GPSR or AFR.
Loopfree hybrid singlepath/flooding routing algorithms with guaranteed delivery for wireless networks
 IEEE Transactions on Parallel and Distributed Systems
, 2001
"... AbstractÐIn a localized routing algorithm, each node makes forwarding decisions solely based on the position of itself, its neighbors, and its destination. In distance, progress, and directionbased approaches (reported in the literature), when node A wants to send or forward message m to destinatio ..."
Abstract

Cited by 111 (15 self)
 Add to MetaCart
AbstractÐIn a localized routing algorithm, each node makes forwarding decisions solely based on the position of itself, its neighbors, and its destination. In distance, progress, and directionbased approaches (reported in the literature), when node A wants to send or forward message m to destination node D, it forwards m to its neighbor C which is closest to D (has best progress toward D, whose direction is closest to the direction of D, respectively) among all neighbors of A. The same procedure is repeated until D, if possible, is eventually reached. The algorithms are referred to as GEDIR, MFR, and DIR when a common failure criterion is introduced: The algorithm stops if the best choice for the current node is the node from which the message came. We propose 2hop GEDIR, DIR, and MFR methods in which node A selects the best candidate node C among its 1hop and 2hop neighbors according to the corresponding criterion and forwards m to its best 1hop neighbor among joint neighbors of A and C. We then propose flooding GEDIR and MFR and hybrid singlepath/flooding GEDIR and MFR methods which are the first localized algorithms (other than full flooding) to guarantee the message delivery (in a collisionfree environment). We show that the directional routing methods are not loopfree, while the GEDIR and MFRbased methods are inherently loop free. The simulation experiments, with static random graphs, show that GEDIR and MFR have similar success rates, which is low for low degree graphs and high for high degree ones. When successful, their hop counts are near the performance of the shortest path algorithm. Hybrid singlepath/flooding GEDIR and MFR methods have low communication overheads. The results are also confirmed by experiments with moving nodes and MAC layer. Index TermsÐRouting, wireless networks, distributed algorithms, shortest path, broadcasting 1
A Survey of Routing Techniques for Mobile Communications Networks
 MOBILE NETWORKS AND APPLICATIONS
, 1996
"... Mobile wireless networks pose interesting challenges for routing system design. To produce feasible routes in a mobile wireless network, a routing system must be able to accommodate roving users, changing network topology, and fluctuating link quality. We discuss the impact of node mobility and wi ..."
Abstract

Cited by 107 (0 self)
 Add to MetaCart
Mobile wireless networks pose interesting challenges for routing system design. To produce feasible routes in a mobile wireless network, a routing system must be able to accommodate roving users, changing network topology, and fluctuating link quality. We discuss the impact of node mobility and wireless communication on routing system design, and we survey the set of techniques employed in or proposed for routing in mobile wireless networks.
AdHoc Networks Beyond Unit Disk Graphs
, 2003
"... In this paper we study a model for adhoc networks close enough to reality as to represent existing networks, being at the same time concise enough to promote strong theoretical results. The Quasi Unit Disk Graph model contains all edges shorter than a parameter d between 0 and 1 and no edges longer ..."
Abstract

Cited by 101 (10 self)
 Add to MetaCart
In this paper we study a model for adhoc networks close enough to reality as to represent existing networks, being at the same time concise enough to promote strong theoretical results. The Quasi Unit Disk Graph model contains all edges shorter than a parameter d between 0 and 1 and no edges longer than 1. We show that  in comparison to the cost known on Unit Disk Graphs  the complexity results in this model contain the additional factor 1/d². We prove that in Quasi Unit Disk Graphs flooding is an asymptotically messageoptimal routing technique, provide a geometric routing algorithm being more efficient above all in dense networks, and show that classic geometric routing is possible with the same performance guarantees as for Unit Disk Graphs if d 1/ # 2.