Results 1  10
of
81
A NATURAL AXIOMATIZATION OF COMPUTABILITY AND PROOF OF CHURCH’S THESIS
, 2008
"... Church’s Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turingcomputable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally equivalent ..."
Abstract

Cited by 42 (17 self)
 Add to MetaCart
(Show Context)
Church’s Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turingcomputable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally equivalent to an abstract state machine. This theorem presupposes three natural postulates about algorithmic computation. Here, we show that augmenting those postulates with an additional requirement regarding basic operations gives a natural axiomatization of computability and a proof of Church’s Thesis, as Gödel and others suggested may be possible. In a similar way, but with a different set of basic operations, one can prove Turing’s Thesis, characterizing the effective string functions, and—in particular—the effectivelycomputable functions on string representations of numbers.
Computable Isomorphisms, Degree Spectra of Relations, and Scott Families
 Ann. Pure Appl. Logic
, 1998
"... this paper we are interested in those structures in which the basic computations can be performed by Turing machines. ..."
Abstract

Cited by 26 (12 self)
 Add to MetaCart
(Show Context)
this paper we are interested in those structures in which the basic computations can be performed by Turing machines.
Computably categorical structures and expansions by constants
 J. Symbolic Logic
, 1999
"... Effective model theory is the subject that analyzes the typical notions and results of model theory to determine their effective content and counterparts. The subject has been developed both in the former Soviet Union and in the west with various names (recursive model theory, constructive model the ..."
Abstract

Cited by 25 (14 self)
 Add to MetaCart
(Show Context)
Effective model theory is the subject that analyzes the typical notions and results of model theory to determine their effective content and counterparts. The subject has been developed both in the former Soviet Union and in the west with various names (recursive model theory, constructive model theory,
On Presentations of Algebraic Structures
 in Complexity, Logic and Recursion Theory
, 1995
"... This paper is an expanded version of an part of a series of invited lectures given by the author during May 1995 in Siena, Italy to the COLORET II conference. This work is partially supported by Victoria University IGC and the Marsden Fund for Basic Science under grant VIC509. This paper is dedicat ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
(Show Context)
This paper is an expanded version of an part of a series of invited lectures given by the author during May 1995 in Siena, Italy to the COLORET II conference. This work is partially supported by Victoria University IGC and the Marsden Fund for Basic Science under grant VIC509. This paper is dedicated to the memory of my friend and teacher Chris Ash who contributed so much to effective structure theory and who left us far too young early in 1995
Complexity and Real Computation: A Manifesto
 International Journal of Bifurcation and Chaos
, 1995
"... . Finding a natural meeting ground between the highly developed complexity theory of computer science with its historical roots in logic and the discrete mathematics of the integers and the traditional domain of real computation, the more eclectic less foundational field of numerical analysis ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
. Finding a natural meeting ground between the highly developed complexity theory of computer science with its historical roots in logic and the discrete mathematics of the integers and the traditional domain of real computation, the more eclectic less foundational field of numerical analysis with its rich history and longstanding traditions in the continuous mathematics of analysis presents a compelling challenge. Here we illustrate the issues and pose our perspective toward resolution. This article is essentially the introduction of a book with the same title (to be published by Springer) to appear shortly. Webster: A public declaration of intentions, motives, or views. k Partially supported by NSF grants. y International Computer Science Institute, 1947 Center St., Berkeley, CA 94704, U.S.A., lblum@icsi.berkeley.edu. Partially supported by the LettsVillard Chair at Mills College. z Universitat Pompeu Fabra, Balmes 132, Barcelona 08008, SPAIN, cucker@upf.es. P...
ComputabilityTheoretic and ProofTheoretic Aspects of Partial and Linear Orderings
 Israel Journal of mathematics
"... Szpilrajn's Theorem states that any partial order P = hS; <P i has a linear extension L = hS; <L i. This is a central result in the theory of partial orderings, allowing one to de ne, for instance, the dimension of a partial ordering. It is now natural to ask questions like \Does a we ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
(Show Context)
Szpilrajn's Theorem states that any partial order P = hS; <P i has a linear extension L = hS; <L i. This is a central result in the theory of partial orderings, allowing one to de ne, for instance, the dimension of a partial ordering. It is now natural to ask questions like \Does a wellpartial ordering always have a wellordered linear extension?" Variations of Szpilrajn's Theorem state, for various (but not for all) linear order types , that if P does not contain a subchain of order type , then we can choose L so that L also does not contain a subchain of order type . In particular, a wellpartial ordering always has a wellordered extension.
Specification and Analysis of RealTime and Hybrid Systems in Rewriting Logic
, 2000
"... 2 Dedicated with affection to my beloved parents Cecilia and Miklós 3 4 ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
(Show Context)
2 Dedicated with affection to my beloved parents Cecilia and Miklós 3 4
Computable fields and Galois theory
 Notices of the American Mathematical Society
, 2008
"... An irreducible polynomial has a solution in radicals over a field F if and only if the Galois group of the splitting field of the polynomial is solvable. This result is widely considered to be the crowning achievement of Galois theory, and is often the first response when a mathematician wants to de ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
(Show Context)
An irreducible polynomial has a solution in radicals over a field F if and only if the Galois group of the splitting field of the polynomial is solvable. This result is widely considered to be the crowning achievement of Galois theory, and is often the first response when a mathematician wants to describe the
The computable dimension of ordered Abelian groups
 Advances in Mathematics 175 (2003
"... Let G be a computable ordered abelian group. We show that the computable dimension of G is either 1 or ω, that G is computably categorical if and only if it has finite rank, and that if G has only finitely many Archimedean classes, then G has a computable presentation which admits a computable basis ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
(Show Context)
Let G be a computable ordered abelian group. We show that the computable dimension of G is either 1 or ω, that G is computably categorical if and only if it has finite rank, and that if G has only finitely many Archimedean classes, then G has a computable presentation which admits a computable basis. 1