Results 1  10
of
42
Computably categorical structures and expansions by constants
 J. Symbolic Logic
, 1999
"... Effective model theory is the subject that analyzes the typical notions and results of model theory to determine their effective content and counterparts. The subject has been developed both in the former Soviet Union and in the west with various names (recursive model theory, constructive model the ..."
Abstract

Cited by 26 (14 self)
 Add to MetaCart
Effective model theory is the subject that analyzes the typical notions and results of model theory to determine their effective content and counterparts. The subject has been developed both in the former Soviet Union and in the west with various names (recursive model theory, constructive model theory,
Computable Isomorphisms, Degree Spectra of Relations, and Scott Families
 Ann. Pure Appl. Logic
, 1998
"... this paper we are interested in those structures in which the basic computations can be performed by Turing machines. ..."
Abstract

Cited by 26 (12 self)
 Add to MetaCart
this paper we are interested in those structures in which the basic computations can be performed by Turing machines.
A NATURAL AXIOMATIZATION OF COMPUTABILITY AND PROOF OF CHURCH’S THESIS
"... Abstract. Church’s Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turingcomputable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally e ..."
Abstract

Cited by 21 (10 self)
 Add to MetaCart
Abstract. Church’s Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turingcomputable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally equivalent to an abstract state machine. This theorem presupposes three natural postulates about algorithmic computation. Here, we show that augmenting those postulates with an additional requirement regarding basic operations gives a natural axiomatization of computability and a proof of Church’s Thesis, as Gödel and others suggested may be possible. In a similar way, but with a different set of basic operations, one can prove Turing’s Thesis, characterizing the effective string functions, and—in particular—the effectivelycomputable functions on string representations of numbers.
On Presentations of Algebraic Structures
 in Complexity, Logic and Recursion Theory
, 1995
"... This paper is an expanded version of an part of a series of invited lectures given by the author during May 1995 in Siena, Italy to the COLORET II conference. This work is partially supported by Victoria University IGC and the Marsden Fund for Basic Science under grant VIC509. This paper is dedicat ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
This paper is an expanded version of an part of a series of invited lectures given by the author during May 1995 in Siena, Italy to the COLORET II conference. This work is partially supported by Victoria University IGC and the Marsden Fund for Basic Science under grant VIC509. This paper is dedicated to the memory of my friend and teacher Chris Ash who contributed so much to effective structure theory and who left us far too young early in 1995
Complexity and Real Computation: A Manifesto
 International Journal of Bifurcation and Chaos
, 1995
"... . Finding a natural meeting ground between the highly developed complexity theory of computer science with its historical roots in logic and the discrete mathematics of the integers and the traditional domain of real computation, the more eclectic less foundational field of numerical analysis ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
. Finding a natural meeting ground between the highly developed complexity theory of computer science with its historical roots in logic and the discrete mathematics of the integers and the traditional domain of real computation, the more eclectic less foundational field of numerical analysis with its rich history and longstanding traditions in the continuous mathematics of analysis presents a compelling challenge. Here we illustrate the issues and pose our perspective toward resolution. This article is essentially the introduction of a book with the same title (to be published by Springer) to appear shortly. Webster: A public declaration of intentions, motives, or views. k Partially supported by NSF grants. y International Computer Science Institute, 1947 Center St., Berkeley, CA 94704, U.S.A., lblum@icsi.berkeley.edu. Partially supported by the LettsVillard Chair at Mills College. z Universitat Pompeu Fabra, Balmes 132, Barcelona 08008, SPAIN, cucker@upf.es. P...
Specification and Analysis of RealTime and Hybrid Systems in Rewriting Logic
, 2000
"... 2 Dedicated with affection to my beloved parents Cecilia and Miklós 3 4 ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
2 Dedicated with affection to my beloved parents Cecilia and Miklós 3 4
ComputabilityTheoretic and ProofTheoretic Aspects of Partial and Linear Orderings
 Israel Journal of mathematics
"... Szpilrajn's Theorem states that any partial order P = hS;
Abstract

Cited by 9 (0 self)
 Add to MetaCart
Szpilrajn's Theorem states that any partial order P = hS; <P i has a linear extension L = hS; <L i. This is a central result in the theory of partial orderings, allowing one to de ne, for instance, the dimension of a partial ordering. It is now natural to ask questions like \Does a wellpartial ordering always have a wellordered linear extension?" Variations of Szpilrajn's Theorem state, for various (but not for all) linear order types , that if P does not contain a subchain of order type , then we can choose L so that L also does not contain a subchain of order type . In particular, a wellpartial ordering always has a wellordered extension.
Ordered Groups: A Case Study In Reverse Mathematics
 Bulletin of Symbolic Logic
, 1999
"... this article, we will be concerned only with fully ordered groups and will use the term ordered group to mean fully ordered group. There are a number of group conditions which imply full orderability. The simplest is given by the following classical theorem. ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
this article, we will be concerned only with fully ordered groups and will use the term ordered group to mean fully ordered group. There are a number of group conditions which imply full orderability. The simplest is given by the following classical theorem.
Equivalence of BSS scalar and vectorrecursion
, 2001
"... BSScomputable functions can be approached in two ways: from the point of view of computations performed by machines or under the angle of the theory of recursive functions. The goal of this paper is to answer negatively a basic question of the theory of BSSrecursive functions, namely “is vectorre ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
BSScomputable functions can be approached in two ways: from the point of view of computations performed by machines or under the angle of the theory of recursive functions. The goal of this paper is to answer negatively a basic question of the theory of BSSrecursive functions, namely “is vectorrecursion stronger than scalar recursion?