Results 1  10
of
70
Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data
 IEEE Transactions on Visualization and Computer Graphics
, 2006
"... Abstract—A compound graph is a frequently encountered type of data set. Relations are given between items, and a hierarchy is defined on the items as well. We present a new method for visualizing such compound graphs. Our approach is based on visually bundling the adjacency edges, i.e., nonhierarch ..."
Abstract

Cited by 151 (9 self)
 Add to MetaCart
Abstract—A compound graph is a frequently encountered type of data set. Relations are given between items, and a hierarchy is defined on the items as well. We present a new method for visualizing such compound graphs. Our approach is based on visually bundling the adjacency edges, i.e., nonhierarchical edges, together. We realize this as follows. We assume that the hierarchy is shown via a standard tree visualization method. Next, we bend each adjacency edge, modeled as a Bspline curve, toward the polyline defined by the path via the inclusion edges from one node to another. This hierarchical bundling reduces visual clutter and also visualizes implicit adjacency edges between parent nodes that are the result of explicit adjacency edges between their respective child nodes. Furthermore, hierarchical edge bundling is a generic method which can be used in conjunction with existing tree visualization techniques. We illustrate our technique by providing example visualizations and discuss the results based on an informal evaluation provided by potential users of such visualizations.
A Fast MultiScale Method for Drawing Large Graphs
 JOURNAL OF GRAPH ALGORITHMS AND APPLICATIONS
, 2002
"... We present a multiscale layout algorithm for the aesthetic drawing of undirected graphs with straightline edges. The algorithm is extremely fast, and is capable of drawing graphs that are substantially larger than those we have encountered in prior work. For example, the paper contains a drawi ..."
Abstract

Cited by 79 (10 self)
 Add to MetaCart
We present a multiscale layout algorithm for the aesthetic drawing of undirected graphs with straightline edges. The algorithm is extremely fast, and is capable of drawing graphs that are substantially larger than those we have encountered in prior work. For example, the paper contains a drawing of a graph with over 15,000 vertices. Also we achieve "nice" drawings of 1000 vertex graphs in about 1 second. The proposed algorithm embodies a new multiscale scheme for drawing graphs, which was motivated by the earlier multiscale algorithm of Hadany and Harel [HH99]. In principle, it could significantly improve the speed of essentially any forcedirected method (regardless of that method's ability of drawing weighted graphs or the continuity of its costfunction).
ACE: A Fast Multiscale Eigenvector Computation for Drawing Huge Graphs
, 2002
"... We present an extremely fast graph drawing algorithm for very large graphs, which we term ACE (for Algebraic multigrid Computation of Eigenvectors). ACE finds an optimal drawing by minimizing a quadratic energy function due to Hall, using a novel algebraic multigrid technique. The algorithm exhibits ..."
Abstract

Cited by 63 (13 self)
 Add to MetaCart
We present an extremely fast graph drawing algorithm for very large graphs, which we term ACE (for Algebraic multigrid Computation of Eigenvectors). ACE finds an optimal drawing by minimizing a quadratic energy function due to Hall, using a novel algebraic multigrid technique. The algorithm exhibits an improvement of something like two orders of magnitude over the fastest algorithms we are aware of; it draws graphs of a million nodes in less than a minute. Moreover, the algorithm can deal with more general entities, such as graphs with masses and negative weights (to be defined in the text), and it appears to be applicable outside of graph drawing too.
StraightLine Drawing Algorithms for Hierarchical Graphs and Clustered Graphs
 Algorithmica
, 1999
"... Hierarchical graphs and clustered graphs are useful nonclassical graph models for structured relational information. Hierarchical graphs are graphs with layering structures; clustered graphs are graphs with recursive clustering structures. Both have applications in CASE tools, software visualizatio ..."
Abstract

Cited by 59 (12 self)
 Add to MetaCart
Hierarchical graphs and clustered graphs are useful nonclassical graph models for structured relational information. Hierarchical graphs are graphs with layering structures; clustered graphs are graphs with recursive clustering structures. Both have applications in CASE tools, software visualization, and VLSI design. Drawing algorithms for hierarchical graphs have been well investigated. However, the problem of straightline representation has not been solved completely. In this paper, we answer the question: does every planar hierarchical graph admit a planar straightline hierarchical drawing? We present an algorithm that constructs such drawings in linear time. Also, we answer a basic question for clustered graphs, that is, does every planar clustered graph admit a planar straightline drawing with clusters drawn as convex polygons? We provide a method for such drawings based on our algorithm for hierarchical graphs.
Visual exploration of multivariate graphs
 In Proceedings of the SIGCHI conference on Human Factors in computing systems
, 2006
"... rolled up onto two categorical dimensions This paper introduces PivotGraph, a software tool that uses a new technique for visualizing and analyzing graph structures. The technique is designed specifically for graphs that are “multivariate, ” i.e., where each node is associated with several attribute ..."
Abstract

Cited by 56 (1 self)
 Add to MetaCart
rolled up onto two categorical dimensions This paper introduces PivotGraph, a software tool that uses a new technique for visualizing and analyzing graph structures. The technique is designed specifically for graphs that are “multivariate, ” i.e., where each node is associated with several attributes. Unlike visualizations which emphasize global graph topology, PivotGraph uses a simple gridbased approach to focus on the relationship between node attributes and connections. The interaction technique is derived from an analogy with methods seen in spreadsheet pivot tables and in online analytical processing (OLAP). Finally, several examples are presented in which PivotGraph was applied to realworld data sets.
ForceDirected Edge Bundling for Graph Visualization
, 2009
"... Graphs depicted as nodelink diagrams are widely used to show relationships between entities. However, nodelink diagrams comprised of a large number of nodes and edges often suffer from visual clutter. The use of edge bundling remedies this and reveals highlevel edge patterns. Previous methods requ ..."
Abstract

Cited by 38 (0 self)
 Add to MetaCart
Graphs depicted as nodelink diagrams are widely used to show relationships between entities. However, nodelink diagrams comprised of a large number of nodes and edges often suffer from visual clutter. The use of edge bundling remedies this and reveals highlevel edge patterns. Previous methods require the graph to contain a hierarchy for this, or they construct a control mesh to guide the edge bundling process, which often results in bundles that show considerable variation in curvature along the overall bundle direction. We present a new edge bundling method that uses a selforganizing approach to bundling in which edges are modeled as flexible springs that can attract each other. In contrast to previous methods, no hierarchy is used and no control mesh. The resulting bundled graphs show significant clutter reduction and clearly visible highlevel edge patterns. Curvature variation is furthermore minimized, resulting in smooth bundles that are easy to follow. Finally, we present a rendering technique that can be used to emphasize the bundling.
A Multidimensional Approach to ForceDirected Layouts of Large Graphs
, 2000
"... Abstract. We present a novel hierarchical forcedirected method for drawing large graphs. The algorithm produces a graph embedding in an Euclidean space E of any dimension. A two or three dimensional drawing of the graph is then obtained by projecting a higherdimensional embedding into a two or thr ..."
Abstract

Cited by 36 (5 self)
 Add to MetaCart
Abstract. We present a novel hierarchical forcedirected method for drawing large graphs. The algorithm produces a graph embedding in an Euclidean space E of any dimension. A two or three dimensional drawing of the graph is then obtained by projecting a higherdimensional embedding into a two or three dimensional subspace of E. Projecting highdimensional drawings onto two or three dimensions often results in drawings that are “smoother ” and more symmetric. Among the other notable features of our approach are the utilization of a maximal independent set filtration of the set of vertices of a graph, a fast energy function minimization strategy, efficient memory management, and an intelligent initial placement of vertices. Our implementation of the algorithm can draw graphs with tens of thousands of vertices using a negligible amount of memory in less than one minute on a midrange PC. 1
Online Dynamic Graph Drawing
"... This paper presents an algorithm for drawing a sequence of graphs online. The algorithm strives to maintain the global structure of the graph and thus the user’s mental map, while allowing arbitrary modifications between consecutive layouts. The algorithm works online and uses various execution cu ..."
Abstract

Cited by 34 (1 self)
 Add to MetaCart
This paper presents an algorithm for drawing a sequence of graphs online. The algorithm strives to maintain the global structure of the graph and thus the user’s mental map, while allowing arbitrary modifications between consecutive layouts. The algorithm works online and uses various execution culling methods in order to reduce the layout time and handle large dynamic graphs. Techniques for representing graphs on the GPU allow a speedup by a factor of up to 17 compared to the CPU implementation. The scalability of the algorithm across GPU generations is demonstrated. Applications of the algorithm to the visualization of discussion threads in Internet sites and to the visualization of social networks are provided.
Confluent drawings: Visualizing NonPlanar Diagrams in a Planar Way
 GRAPH DRAWING (PROC. GD ’03), VOLUME 2912 OF LECTURE NOTES COMPUT. SCI
, 2003
"... We introduce a new approach for drawing diagrams. Our approach is to use a technique we call confluent drawing for visualizing nonplanar graphs in a planar way. This approach allows us to draw, in a crossingfree manner, graphs—such as software interaction diagrams—that would normally have many cro ..."
Abstract

Cited by 30 (8 self)
 Add to MetaCart
We introduce a new approach for drawing diagrams. Our approach is to use a technique we call confluent drawing for visualizing nonplanar graphs in a planar way. This approach allows us to draw, in a crossingfree manner, graphs—such as software interaction diagrams—that would normally have many crossings. The main idea of this approach is quite simple: we allow groups of edges to be merged together and drawn as “tracks” (similar to train tracks). Producing such confluent drawings automatically from a graph with many crossings is quite challenging, however, we offer a heuristic algorithm (one version for undirected graphs and one version for directed ones) to test if a nonplanar graph can be drawn efficiently in a confluent way. In addition, we identify several large classes of graphs that can be completely categorized as being either confluently drawable or confluently nondrawable.
Drawing Huge Graphs by Algebraic Multigrid Optimization. Multiscale Modeling and Simulation
, 2003
"... Abstract. We present an extremely fast graph drawing algorithm for very large graphs, which we term ACE (for Algebraic multigrid Computation of Eigenvectors). ACE exhibits a vast improvement over the fastest algorithms we are currently aware of; using a serial PC, it draws graphs of millions of node ..."
Abstract

Cited by 30 (3 self)
 Add to MetaCart
Abstract. We present an extremely fast graph drawing algorithm for very large graphs, which we term ACE (for Algebraic multigrid Computation of Eigenvectors). ACE exhibits a vast improvement over the fastest algorithms we are currently aware of; using a serial PC, it draws graphs of millions of nodes in less than a minute. ACE finds an optimal drawing by minimizing a quadratic energy function. The minimization problem is expressed as a generalized eigenvalue problem, which is solved rapidly using a novel algebraic multigrid technique. The same generalized eigenvalue problem seems to come up also in other fields, hence ACE appears to be applicable outside graph drawing too.