Results 1  10
of
26
Equivalence in Functional Languages with Effects
, 1991
"... Traditionally the view has been that direct expression of control and store mechanisms and clear mathematical semantics are incompatible requirements. This paper shows that adding objects with memory to the callbyvalue lambda calculus results in a language with a rich equational theory, satisfying ..."
Abstract

Cited by 112 (13 self)
 Add to MetaCart
Traditionally the view has been that direct expression of control and store mechanisms and clear mathematical semantics are incompatible requirements. This paper shows that adding objects with memory to the callbyvalue lambda calculus results in a language with a rich equational theory, satisfying many of the usual laws. Combined with other recent work this provides evidence that expressive, mathematically clean programming languages are indeed possible. 1. Overview Real programs have effectscreating new structures, examining and modifying existing structures, altering flow of control, etc. Such facilities are important not only for optimization, but also for communication, clarity, and simplicity in programming. Thus it is important to be able to reason both informally and formally about programs with effects, and not to sweep effects either to the side or under the store parameter rug. Recent work of Talcott, Mason, Felleisen, and Moggi establishes a mathematical foundation for...
A Variable Typed Logic of Effects
 Information and Computation
, 1993
"... In this paper we introduce a variable typed logic of effects inspired by the variable type systems of Feferman for purely functional languages. VTLoE (Variable Typed Logic of Effects) is introduced in two stages. The first stage is the firstorder theory of individuals built on assertions of equalit ..."
Abstract

Cited by 48 (12 self)
 Add to MetaCart
In this paper we introduce a variable typed logic of effects inspired by the variable type systems of Feferman for purely functional languages. VTLoE (Variable Typed Logic of Effects) is introduced in two stages. The first stage is the firstorder theory of individuals built on assertions of equality (operational equivalence `a la Plotkin), and contextual assertions. The second stage extends the logic to include classes and class membership. The logic we present provides an expressive language for defining and studying properties of programs including program equivalences, in a uniform framework. The logic combines the features and benefits of equational calculi as well as program and specification logics. In addition to the usual firstorder formula constructions, we add contextual assertions. Contextual assertions generalize Hoare's triples in that they can be nested, used as assumptions, and their free variables may be quantified. They are similar in spirit to program modalities in ...
References, Local Variables and Operational Reasoning
 In Seventh Annual Symposium on Logic in Computer Science
, 1992
"... this paper we regard the following as synonyms: references, program variables, pointers, locations, and unary cells) to a programming language complicates life. Adding them to the simply typed lambda calculus causes the failure of most of the nice mathematical properties and some of the more basic r ..."
Abstract

Cited by 29 (4 self)
 Add to MetaCart
this paper we regard the following as synonyms: references, program variables, pointers, locations, and unary cells) to a programming language complicates life. Adding them to the simply typed lambda calculus causes the failure of most of the nice mathematical properties and some of the more basic rules (such as j). For example strong normalization fails since it is possible, for each provably nonempty function type, to construct a Y combinator for that type. References also interact unpleasantly with polymorphism [34, 35]. They are also troublesome from a denotational point of view as illustrated by the lack of fully abstract models. For example, in [22] Meyer and Sieber give a series of examples of programs that are operationally equivalent (according to the intended semantics of blockstructured Algollike programs) but which are not given equivalent denotations in traditional denotational semantics. They propose various modifications to the denotational semantics which solve some of these discrepancies, but not all. In [27, 26] a denotational semantics that overcomes some of these problems is presented. However variations on the seventh example remain problematic. Since numerous proof systems for Algol are sound for the denotational models in question, [8, 7, 32, 28, 16, 27, 26], these equivalences, if expressible, must be independent of these systems. The problem which motivated Meyer and Sieber's paper, [22], was to provide mathematical justification for the informal but convincing proofs of the operational equivalence of their examples. In this paper we approach the same problem, but from an operational rather than denotational perspective. This paper accomplishes two goals. Firstly, we present the firstorder part of a new logic for reasoning about programs....
Inferring the Equivalence of Functional Programs that Mutate Data
 Theoretical Computer Science
, 1992
"... this paper we study the constrained equivalence of programs with effects. In particular, we present a formal system for deriving such equivalences. Constrained equivalence is defined via a model theoretic characterization of operational, or observational, equivalence called strong isomorphism. Opera ..."
Abstract

Cited by 26 (7 self)
 Add to MetaCart
this paper we study the constrained equivalence of programs with effects. In particular, we present a formal system for deriving such equivalences. Constrained equivalence is defined via a model theoretic characterization of operational, or observational, equivalence called strong isomorphism. Operational equivalence, as introduced by Morris [23] and Plotkin [27], treats programs as black boxes. Two expressions are operationally equivalent if they are indistinguishable in all program contexts. This equivalence is the basis for soundness results for program calculi and program transformation theories. Strong isomorphism, as introduced by Mason [14], also treats programs as black boxes. Two expressions are strongly isomorphic if in all memory states they return the same value, and have the same effect on memory (modulo the production of garbage). Strong isomorphism implies operational equivalence. The converse is true for firstorder languages; it is false for full higherorder languages. However, even in the higherorder case, it remains an useful tool for establishing equivalence. Since strong isomorphism is defined by quantifying over memory states, rather than program contexts, it is a simple matter to restrict this equivalence to those memory states which satisfy a set of constraints. It is for this reason that strong isomorphism is a useful relation, even in the higherorder case. The formal system we present defines a singleconclusion consequence relation \Sigma ` \Phi where \Sigma is a finite set of constraints and \Phi is an assertion. The semantics of the formal system is given by a semantic consequence relation, \Sigma j= \Phi, defined in terms of a class of memory models for assertions and constraints. The assertions we consider are of the following two forms...
Axiomatizing Operational Equivalence in the presence of Side Effects
 In Fourth Annual Symposium on Logic in Computer Science. IEEE
, 1989
"... this paper we present a formal system for deriving assertions about programs with side effects. The assertions we consider are of the following two forms: (i) e diverges (i.e. fails to reduce to a value), written " e; (ii) e 0 and e 1 are strongly isomorphic (i.e. reduce to the same value and have ..."
Abstract

Cited by 20 (9 self)
 Add to MetaCart
this paper we present a formal system for deriving assertions about programs with side effects. The assertions we consider are of the following two forms: (i) e diverges (i.e. fails to reduce to a value), written " e; (ii) e 0 and e 1 are strongly isomorphic (i.e. reduce to the same value and have the same effect on memory up to production of garbage), written
Abstracting Abstract Machines
"... We describe a derivational approach to abstract interpretation that yields novel and transparently sound static analyses when applied to wellestablished abstract machines. To demonstrate the technique and support our claim, we transform the CEK machine of Felleisen and Friedman, a lazy variant of K ..."
Abstract

Cited by 15 (9 self)
 Add to MetaCart
We describe a derivational approach to abstract interpretation that yields novel and transparently sound static analyses when applied to wellestablished abstract machines. To demonstrate the technique and support our claim, we transform the CEK machine of Felleisen and Friedman, a lazy variant of Krivine’s machine, and the stackinspecting CM machine of Clements and Felleisen into abstract interpretations of themselves. The resulting analyses bound temporal ordering of program events; predict returnflow and stackinspection behavior; and approximate the flow and evaluation of byneed parameters. For all of these machines, we find that a series of wellknown concrete machine refactorings, plus a technique we call storeallocated continuations, leads to machines that abstract into static analyses simply by bounding their stores. We demonstrate that the technique scales up uniformly to allow static analysis of realistic language features, including tail calls, conditionals, side effects, exceptions, firstclass continuations, and even garbage collection.
Reasoning about Functions with Effects
 See Gordon and Pitts
, 1997
"... ing and using (Lunif) we have that any two lambdas that are everywhere undefined are equivalent. The classic example of an everywhere undefined lambda is Bot 4 = x:app(x:app(x; x); x:app(x; x)) In f , another example of an everywhere undefined lambda is the "doforever" loop. Do 4 = f:Yv(Dox ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
ing and using (Lunif) we have that any two lambdas that are everywhere undefined are equivalent. The classic example of an everywhere undefined lambda is Bot 4 = x:app(x:app(x; x); x:app(x; x)) In f , another example of an everywhere undefined lambda is the "doforever" loop. Do 4 = f:Yv(Dox:Do(f(x)) By the recursive definition, for any lambda ' and value v Do(')(v) \Gamma!Ø Do(')('(v)) Reasoning about Functions with Effects 21 In f , either '(v) \Gamma!Ø v 0 for some v 0 or '(v) is undefined. In the latter case the computation is undefined since the redex is undefined. In the former case, the computation reduces to Do(')(v 0 ) and on we go. The argument for undefinedness of Bot relies only on the (app) rule and will be valid in any uniform semantics. In contrast the argument for undefinedness of Do(') relies on the (fred.isdef) property of f . Functional Streams We now illustrate the use of (Lunifsim) computation to reason about streams represented as functions ...
Reasoning about class behavior
 In FOOL/WOOD
, 2007
"... We present a sound and complete method for reasoning about contextual equivalence between different implementations of classes in an imperative subset of Java. To the extent of our knowledge this is the first such method for a language with unrestricted inheritance, where the context can arbitrarily ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
We present a sound and complete method for reasoning about contextual equivalence between different implementations of classes in an imperative subset of Java. To the extent of our knowledge this is the first such method for a language with unrestricted inheritance, where the context can arbitrarily extend classes to distinguish otherwise equivalent implementations. Similar reasoning techniques for classbased languages [1, 12] don’t consider inheritance at all, or forbid the context from extending related classes. Other techniques that do consider inheritance [3] study wholeprogram equivalence. Our technique also handles public, private, and protected interfaces of classes, imperative fields, and invocations of callbacks. Using our technique we were able to prove equivalences in examples with higherorder behavior, where previous methods for functional calculi admit limitations [21, 24]. Adding inheritance to a classbased language increases the distinguishing power of the context. Here we show how this extra distinguishing power is reflected in the conditions for equivalence of our technique. Furthermore we show that adding a cast operator is a conservative extension of the language. 1.
A Theory of Classes for a Functional Language with Effects
 In Proceedings of CSL92, volume 702 of Lecture Notes in Computer Science
, 1993
"... this paper we introduce a variable typed logic of effects (i.e. a logic of effects where classes can be defined and quantified over) inspired by the variable type systems of Feferman [3, 4] for purely functional languages. A similar extension incorporating nonlocal control operations was introduced ..."
Abstract

Cited by 7 (6 self)
 Add to MetaCart
this paper we introduce a variable typed logic of effects (i.e. a logic of effects where classes can be defined and quantified over) inspired by the variable type systems of Feferman [3, 4] for purely functional languages. A similar extension incorporating nonlocal control operations was introduced in [27]. The logic we present provides an expressive language for defining specifications and constraints and for studying properties and program equivalences, in a uniform framework. Thus it has an advantage over a plethora of systems in the literature that aim to capture solitary aspects of computation. The theory also allows for the construction of inductively defined sets and derivation of the corresponding induction principles. Classes can be used to express, inter alia, the nonexpansiveness of terms [29]. Other effects can also be represented within the system. These include read/write effects and various forms of interference [24]. The first order fragment is described in [16] where it is used to resolve the denotationally problematic examples of [17]. In our language atoms, references and lambda abstractions are all first class values and as such are storable. This has several consequences. Firstly, mutation and variable binding are separate and so we avoid the problems that typically arise (e.g. in Hoare's and dynamic logic) from the conflation of program variables and logical variables. Secondly, the equality and sharing of references (aliasing) is easily expressed and reasoned about. Thirdly, the combination of mutable references and lambda abstractions allows us to study object based programming within our framework. Our atomic formulas express the (operational or observational) equivalence of programs `a la Plotkin [23]. Neither Hoare's logic nor Dynamic logi...