Results 1  10
of
275
Abduction in Logic Programming
"... Abduction in Logic Programming started in the late 80s, early 90s, in an attempt to extend logic programming into a framework suitable for a variety of problems in Artificial Intelligence and other areas of Computer Science. This paper aims to chart out the main developments of the field over th ..."
Abstract

Cited by 536 (73 self)
 Add to MetaCart
Abduction in Logic Programming started in the late 80s, early 90s, in an attempt to extend logic programming into a framework suitable for a variety of problems in Artificial Intelligence and other areas of Computer Science. This paper aims to chart out the main developments of the field over the last ten years and to take a critical view of these developments from several perspectives: logical, epistemological, computational and suitability to application. The paper attempts to expose some of the challenges and prospects for the further development of the field.
Probabilistic Horn abduction and Bayesian networks
 Artificial Intelligence
, 1993
"... This paper presents a simple framework for Hornclause abduction, with probabilities associated with hypotheses. The framework incorporates assumptions about the rule base and independence assumptions amongst hypotheses. It is shown how any probabilistic knowledge representable in a discrete Bayesia ..."
Abstract

Cited by 294 (37 self)
 Add to MetaCart
This paper presents a simple framework for Hornclause abduction, with probabilities associated with hypotheses. The framework incorporates assumptions about the rule base and independence assumptions amongst hypotheses. It is shown how any probabilistic knowledge representable in a discrete Bayesian belief network can be represented in this framework. The main contribution is in finding a relationship between logical and probabilistic notions of evidential reasoning. This provides a useful representation language in its own right, providing a compromise between heuristic and epistemic adequacy. It also shows how Bayesian networks can be extended beyond a propositional language. This paper also shows how a language with only (unconditionally) independent hypotheses can represent any probabilistic knowledge, and argues that it is better to invent new hypotheses to explain dependence rather than having to worry about dependence in the language. Scholar, Canadian Institute for Advanced...
Logic Programming and Knowledge Representation
 Journal of Logic Programming
, 1994
"... In this paper, we review recent work aimed at the application of declarative logic programming to knowledge representation in artificial intelligence. We consider exten sions of the language of definite logic programs by classical (strong) negation, disjunc tion, and some modal operators and sh ..."
Abstract

Cited by 223 (21 self)
 Add to MetaCart
In this paper, we review recent work aimed at the application of declarative logic programming to knowledge representation in artificial intelligence. We consider exten sions of the language of definite logic programs by classical (strong) negation, disjunc tion, and some modal operators and show how each of the added features extends the representational power of the language.
Preferred subtheories: an extended logical framework for default reasoning
, 1989
"... We present a general framework for defining nonmonotonic systems based on the notion of preferred maximal consistent subsets of the premises. This framework subsumes David Poole's THEORIST approach to default reasoning as a particular instance. A disadvantage of THEORIST is that it does not allow to ..."
Abstract

Cited by 199 (8 self)
 Add to MetaCart
We present a general framework for defining nonmonotonic systems based on the notion of preferred maximal consistent subsets of the premises. This framework subsumes David Poole's THEORIST approach to default reasoning as a particular instance. A disadvantage of THEORIST is that it does not allow to represent priorities between defaults adequately (as distinct from blocking defaults in specific situations). We therefore propose two generalizations of Poole's system: in the first generalization several layers of possible hypotheses representing different degrees of reliability are introduced. In a second further generalization a partial ordering between premises is used to distinguish between more and less reliable formulas. In both approaches a formula is provable from a theory if it is possible to construct a consistent argument for it based on the most reliable hypotheses. This allows for a simple representation of priorities between defaults. 1
The Complexity of LogicBased Abduction
, 1993
"... Abduction is an important form of nonmonotonic reasoning allowing one to find explanations for certain symptoms or manifestations. When the application domain is described by a logical theory, we speak about logicbased abduction. Candidates for abductive explanations are usually subjected to minima ..."
Abstract

Cited by 161 (26 self)
 Add to MetaCart
Abduction is an important form of nonmonotonic reasoning allowing one to find explanations for certain symptoms or manifestations. When the application domain is described by a logical theory, we speak about logicbased abduction. Candidates for abductive explanations are usually subjected to minimality criteria such as subsetminimality, minimal cardinality, minimal weight, or minimality under prioritization of individual hypotheses. This paper presents a comprehensive complexity analysis of relevant decision and search problems related to abduction on propositional theories. Our results indicate that abduction is harder than deduction. In particular, we show that with the most basic forms of abduction the relevant decision problems are complete for complexity classes at the second level of the polynomial hierarchy, while the use of prioritization raises the complexity to the third level in certain cases.
Logical Models of Argument
 ACM COMPUTING SURVEYS
, 2000
"... Logical models of argument formalize commonsense reasoning while taking process and computation seriously. This survey discusses the main ideas which characterize different logical models of argument. It presents the formal features of a few main approaches to the modeling of argumentation. We trace ..."
Abstract

Cited by 141 (32 self)
 Add to MetaCart
Logical models of argument formalize commonsense reasoning while taking process and computation seriously. This survey discusses the main ideas which characterize different logical models of argument. It presents the formal features of a few main approaches to the modeling of argumentation. We trace the
Prediction is Deduction but Explanation is Abduction
 Proceedings IJCAI 89
, 1989
"... This paper presents an approach to temporal reasoning in which prediction is deduction but explanation is abduction. It is argued that all causal laws should be expressed in the natural form effect if cause. Any given set of laws expressed in this way can be used for both forwards projection (predic ..."
Abstract

Cited by 139 (11 self)
 Add to MetaCart
This paper presents an approach to temporal reasoning in which prediction is deduction but explanation is abduction. It is argued that all causal laws should be expressed in the natural form effect if cause. Any given set of laws expressed in this way can be used for both forwards projection (prediction) and backwards projection (explanation), but abduction must be used for explanation whilst deduction is used for prediction. The approach described uses a shortened form of Kowalski and Sergot's Event Calculus and incorporates the assumption that properties known to hold must have explanations in terms of events. Using abduction to implement this assumption results in a form of default persistence which correctly handles problems which have troubled other formulations. A straightforward extension to SLD resolution is described which implements the abductive approach to explanation, and which complements the wellunderstood deductive methods for prediction. Introduction Temporal reason...