Results 1 
5 of
5
Optimal design of a CMOS opamp via geometric programming
 IEEE Transactions on ComputerAided Design
, 2001
"... We describe a new method for determining component values and transistor dimensions for CMOS operational ampli ers (opamps). We observe that a wide variety of design objectives and constraints have a special form, i.e., they are posynomial functions of the design variables. As a result the ampli er ..."
Abstract

Cited by 51 (10 self)
 Add to MetaCart
We describe a new method for determining component values and transistor dimensions for CMOS operational ampli ers (opamps). We observe that a wide variety of design objectives and constraints have a special form, i.e., they are posynomial functions of the design variables. As a result the ampli er design problem can be expressed as a special form of optimization problem called geometric programming, for which very e cient global optimization methods have been developed. As a consequence we can e ciently determine globally optimal ampli er designs, or globally optimal tradeo s among competing performance measures such aspower, openloop gain, and bandwidth. Our method therefore yields completely automated synthesis of (globally) optimal CMOS ampli ers, directly from speci cations. In this paper we apply this method to a speci c, widely used operational ampli er architecture, showing in detail how to formulate the design problem as a geometric program. We compute globally optimal tradeo curves relating performance measures such as power dissipation, unitygain bandwidth, and openloop gain. We show how the method can be used to synthesize robust designs, i.e., designs guaranteed to meet the speci cations for a
Optimization of Custom MOS Circuits by Transistor Sizing
 IEEE INTERNATIONAL CONFERENCE ON COMPUTERAIDED DESIGN
, 1996
"... Optimization of a circuit by transistor sizing is often a slow, tedious and iterative manual process which relies on designer intuition. Circuit simulation is carried out in the inner loop of this tuning procedure. Automating the transistor sizing process is an important step towards being able to r ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
Optimization of a circuit by transistor sizing is often a slow, tedious and iterative manual process which relies on designer intuition. Circuit simulation is carried out in the inner loop of this tuning procedure. Automating the transistor sizing process is an important step towards being able to rapidly design highperformance, custom circuits. JiffyTune is a new circuit optimization tool that automates the tuning task. Delay, rise/fall time, area and power targets are accommodated. Each (weighted) target can be either a constraint or an objective function. Minimax optimization is supported. Transistors can be ratioed and similar structures grouped to ensure regular layouts. Bounds on transistor widths are supported. JiffyTune uses
MIDAS  a functional simulator for mixed digital and analog sampled data systems
, 1995
"... Automatic Synthesis of CMOS Digital/Analog Converters by Robert McKinstry Robinson Neff Doctor of Philosophy in Engineering  Electrical Engineering and Computer Sciences University of California at Berkeley Professor Paul R. Gray, Chair Synthesis of analog functional blocks in integrated ci ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
Automatic Synthesis of CMOS Digital/Analog Converters by Robert McKinstry Robinson Neff Doctor of Philosophy in Engineering  Electrical Engineering and Computer Sciences University of California at Berkeley Professor Paul R. Gray, Chair Synthesis of analog functional blocks in integrated circuits offers promise for improved designer productivity. By developing module generators for commonly used analog circuit elements, a synthesis methodology may be matched to a particular application, with approaches and algorithms determined by the particular needs of target circuit type. An analog circuit designer should be able to input design specifications and underlying technology information, and a synthesis methodology should determine circuit parameter values and dimensions, creating the required mask layouts. Slow, tedious design and redesign methods should be replaced by one in which the computer finds minimum cost designs which meet performance requirements. This work implements synthesis methods for a widely used analog block, the digital/analog converter (DAC).
Circuit Optimization via Adjoint Lagrangians
 IEEE INTERNATIONAL CONFERENCE ON COMPUTERAIDED DESIGN
, 1997
"... The circuit tuning problem is best approached by means of gradientbased nonlinear optimization algorithms. For large circuits, gradient computation can be the bottleneck in the optimization procedure. Traditionally, when the number of measurements is large relative to the number of tunable paramete ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
The circuit tuning problem is best approached by means of gradientbased nonlinear optimization algorithms. For large circuits, gradient computation can be the bottleneck in the optimization procedure. Traditionally, when the number of measurements is large relative to the number of tunable parameters, the direct method [2] is used to repeatedly solve the associated sensitivity circuit to obtain all the necessary gradients. Likewise, when the parameters outnumber the measurements, the adjoint method [1] is employed to solve the adjoint circuit repeatedly for each measurement to compute the sensitivities. In this paper, we propose the adjoint Lagrangian method, which computes all the gradients necessary for augmentedLagrangianbased optimization in a single adjoint analysis. After the nominal simulation of the circuit has been carried out, the gradients of the merit function are expressed as the gradients of a weighted sum of circuit measurements. The weights are dependent on the nominal solution and on optimizer quantities such as Lagrange multipliers. By suitably choosing the excitations of the adjoint circuit, the gradients of the merit function are computed via a single adjoint analysis, irrespective of the number of measurements and the number of parameters of the optimization. This procedure requires close integration between the nonlinear optimization software and the circuit simulation program. The adjoint
Henry Chang
 In Proc. IEEE Custom Integrated Circuits Conference
, 1992
"... We describe a topdown, constraintdriven design methodology for Analog Circuits. We delineate some of the tools that support it. Finally, we conclude with examples to better illustrate the methodology and its integration with the tool set. ..."
Abstract
 Add to MetaCart
We describe a topdown, constraintdriven design methodology for Analog Circuits. We delineate some of the tools that support it. Finally, we conclude with examples to better illustrate the methodology and its integration with the tool set.