Results 1  10
of
185
Leadsto: A language and environment for analysis of dynamics by simulation
 Proc. of the Third German Conference on MultiAgent System Technologies, MATES'05. Lecture Notes in Artificial Intelligence
, 2005
"... Abstract. This paper presents the language and software environment LEADSTO that has been developed to model and simulate the dynamics of MultiAgent Systems (MAS) in terms of both qualitative and quantitative concepts. The LEADSTO language is a declarative ordersorted temporal language, extended w ..."
Abstract

Cited by 168 (123 self)
 Add to MetaCart
Abstract. This paper presents the language and software environment LEADSTO that has been developed to model and simulate the dynamics of MultiAgent Systems (MAS) in terms of both qualitative and quantitative concepts. The LEADSTO language is a declarative ordersorted temporal language, extended with quantitative means. Dynamics of MAS can be modelled by specifying the direct temporal dependencies between state properties in successive states. Based on the LEADSTO language, a software environment was developed that performs simulations of LEADSTO specifications, generates simulation traces for further analysis, and constructs visual representations of traces. The approach proved its value in a number of projects within different domains of MAS research. 1
Ontological Semantics
, 2004
"... This book introduces ontological semantics, a comprehensive approach to the treatment of text meaning by computer. Ontological semantics is an integrated complex of theories, methodologies, descriptions and implementations. In ontological semantics, a theory is viewed as a set of statements determin ..."
Abstract

Cited by 87 (27 self)
 Add to MetaCart
This book introduces ontological semantics, a comprehensive approach to the treatment of text meaning by computer. Ontological semantics is an integrated complex of theories, methodologies, descriptions and implementations. In ontological semantics, a theory is viewed as a set of statements determining the format of descriptions of the phenomena with which the theory deals. A theory is associated with a methodology used to obtain the descriptions. Implementations are computer systems that use the descriptions to solve specific problems in text processing. Implementations of ontological semantics are combined with other processing systems to produce applications, such as information extraction or machine translation. The theory of ontological semantics is built as a society of microtheories covering such diverse ground as specific language phenomena, world knowledge organization, processing heuristics and issues relating to knowledge representation and implementation system architecture. The theory briefly sketched above is a toplevel microtheory, the ontological semantics theory per se. Descriptions in ontological semantics include text meaning representations, lexical entries, ontological concepts and instances as well as procedures for manipulating texts and their meanings. Methodologies in ontological semantics are sets of techniques and instructions for acquiring and
Interpolation in Modal Logic
, 1999
"... The interpolation property and Robinson's consistency property are important tools for applying logic to software engineering. We provide a uniform technique for proving the Interpolation Property, using the notion of bisimulation. For modal logics, this leads to simple, easytocheck condit ..."
Abstract

Cited by 83 (6 self)
 Add to MetaCart
The interpolation property and Robinson's consistency property are important tools for applying logic to software engineering. We provide a uniform technique for proving the Interpolation Property, using the notion of bisimulation. For modal logics, this leads to simple, easytocheck conditions on the logic which imply interpolation. We apply this result to fibering of modal logics and to modal logics of knowledge and belief.
Temporalizing description logics
, 1998
"... Traditional rst order predicate logic is known to be designed for representing and manipulating static knowledge (e.g. mathematical theories). So are manyof its applications. Knowledge representation systems based on concept description logics are not exceptions. ..."
Abstract

Cited by 60 (20 self)
 Add to MetaCart
Traditional rst order predicate logic is known to be designed for representing and manipulating static knowledge (e.g. mathematical theories). So are manyof its applications. Knowledge representation systems based on concept description logics are not exceptions.
XPath with conditional axis relations
 In EDBT
, 2004
"... This paper is about the W3C standard nodeaddressing language for XML documents, called XPath. XPath is still under development. Version 2.0 appeared in 2001 while the theoretical foundations of Version 1.0 (dating from 1998) are still being widely studied. The paper aims at bringing XPath to a & ..."
Abstract

Cited by 55 (6 self)
 Add to MetaCart
This paper is about the W3C standard nodeaddressing language for XML documents, called XPath. XPath is still under development. Version 2.0 appeared in 2001 while the theoretical foundations of Version 1.0 (dating from 1998) are still being widely studied. The paper aims at bringing XPath to a "stable fixed point" in its development: a version which is expressively complete, still manageable computationally, with a userfriendly syntax and a natural semantics.
Conditional XPath, the first order complete XPath dialect
, 2004
"... XPath is the W3Cstandard node addressing language for XML documents. XPath is still under development and its technical aspects are intensively studied. What is missing at present is a clear characterization of the expressive power of XPath, be it either semantical or with reference to some well e ..."
Abstract

Cited by 51 (5 self)
 Add to MetaCart
XPath is the W3Cstandard node addressing language for XML documents. XPath is still under development and its technical aspects are intensively studied. What is missing at present is a clear characterization of the expressive power of XPath, be it either semantical or with reference to some well established existing (logical) formalism. Core XPath (the logical core of XPath 1.0 defined by Gottlob et al.) cannot express queries with conditional paths as exemplified by "do a child step, while test is true at the resulting node." In a firstorder complete extension of Core XPath, such queries are expressible. We add conditional axis relations to Core XPath and show that the resulting language, called conditional XPath, is equally expressive as firstorder logic when interpreted on ordered trees. Both the result, the extended XPath language, and the proof are closely related to temporal logic. Specifically, while Core XPath may be viewed as a simple temporal logic, conditional XPath extends this with (counterparts of) the since and until operators.
Temporal Description Logic
 Handbook of Time and Temporal Reasoning in Artificial Intelligence
, 2001
"... This paper introduces a new logical formalism, intended for temporal conceptual modelling, as a natural combination of the wellknown description logic DLR and pointbased linear temporal logic with Since and Until. We define a query language (where queries are nonrecursive Datalog programs and a ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
This paper introduces a new logical formalism, intended for temporal conceptual modelling, as a natural combination of the wellknown description logic DLR and pointbased linear temporal logic with Since and Until. We define a query language (where queries are nonrecursive Datalog programs and atoms are complex DLR US expressions) and investigate the problem of checking query containment under the constraints defined by DLR US conceptual schemas, as well as the problems of schema satisfiability and logical implication. Although it is shown that reasoning in full DLR US is undecidable, we identify the decidable (in a sense, maximal) fragment DLR  US by allowing applications of temporal operators to formulas and entities only (but not to relation expressions) . We obtain the following hierarchy of complexity results: (a) reasoning in DLR  US with atomic formulas is EXPTIMEcomplete, (b) satisfiability and logical implication of arbitrary DLR  US formulas is EXPSPACEcomplete, and (c) the problem of checking query containment of nonrecursive Datalog queries under DLR  US constraints is decidable in 2EXPTIME. 1 1
Conditional XPath
 ACM Trans. Database Syst
, 2005
"... Abstract. XPath 1.0 is a variable free language designed to specify paths between nodes in XML documents. Such paths can alternatively be specified in firstorder logic. The logical abstraction of XPath 1.0, usually called Navigational or Core XPath, is not powerful enough to express every firstord ..."
Abstract

Cited by 47 (4 self)
 Add to MetaCart
Abstract. XPath 1.0 is a variable free language designed to specify paths between nodes in XML documents. Such paths can alternatively be specified in firstorder logic. The logical abstraction of XPath 1.0, usually called Navigational or Core XPath, is not powerful enough to express every firstorder definable path. In this paper we show that there exists a natural expansion of Core XPath in which every firstorder definable path in XML document trees is expressible. This expansion is called Conditional XPath. It contains additional axis relations of the form (child::n[F])+, denoting the transitive closure of the path expressed by child::n[F]. The difference with XPathâ€™s descendant::n[F] is that the path (child::n[F])+ is conditional on the fact that all nodes in between should be labeled by n and should make the predicate F true. This result can be viewed as the XPath analogue of the expressive completeness of the relational algebra with respect to firstorder logic. 1
Possible Worlds and Resources: The Semantics of BI
 THEORETICAL COMPUTER SCIENCE
, 2003
"... The logic of bunched implications, BI, is a substructural system which freely combines an additive (intuitionistic) and a multiplicative (linear) implication via bunches (contexts with two combining operations, one which admits Weakening and Contraction and one which does not). BI may be seen to a ..."
Abstract

Cited by 46 (17 self)
 Add to MetaCart
The logic of bunched implications, BI, is a substructural system which freely combines an additive (intuitionistic) and a multiplicative (linear) implication via bunches (contexts with two combining operations, one which admits Weakening and Contraction and one which does not). BI may be seen to arise from two main perspectives. On the one hand, from prooftheoretic or categorical concerns and, on the other, from a possibleworlds semantics based on preordered (commutative) monoids. This semantics may be motivated from a basic model of the notion of resource. We explain BI's prooftheoretic, categorical and semantic origins. We discuss in detail the question of completeness, explaining the essential distinction between BI with and without ? (the unit of _). We give an extensive discussion of BI as a semantically based logic of resources, giving concrete models based on Petri nets, ambients, computer memory, logic programming, and money.
Fibring: Completeness Preservation
 Journal of Symbolic Logic
, 2000
"... A completeness theorem is established for logics with congruence endowed with general semantics (in the style of general frames). As a corollary, completeness is shown to be preserved by bring logics with congruence provided that congruence is retained in the resulting logic. The class of logics ..."
Abstract

Cited by 45 (23 self)
 Add to MetaCart
A completeness theorem is established for logics with congruence endowed with general semantics (in the style of general frames). As a corollary, completeness is shown to be preserved by bring logics with congruence provided that congruence is retained in the resulting logic. The class of logics with equivalence is shown to be closed under bring and to be included in the class of logics with congruence. Thus, completeness is shown to be preserved by bring logics with equivalence and general semantics. An example is provided showing that completeness is not always preserved by bring logics endowed with standard (non general) semantics. A categorial characterization of bring is provided using coproducts and cocartesian liftings. 1 Introduction Much attention has been recently given to the problems of combining logics and obtaining transference results. Besides leading to very interesting applications whenever it is necessary to work with dierent logics at the same time, ...