Results 11  20
of
115
Vertical decomposition of shallow levels in 3dimensional arrangements and its applications
 SIAM J. Comput
, 1999
"... All intext references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately. ..."
Abstract

Cited by 71 (14 self)
 Add to MetaCart
(Show Context)
All intext references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.
Dynamic planar convex hull
 Proc. 43rd IEEE Sympos. Found. Comput. Sci
, 2002
"... In this paper we determine the amortized computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage o ..."
Abstract

Cited by 67 (1 self)
 Add to MetaCart
(Show Context)
In this paper we determine the amortized computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage of the data structure is O(n). The data structure supports extreme point queries in a given direction, tangent queries through a given point, and queries for the neighboring points on the convex hull in O(log n) time. The extreme point queries can be used to decide whether or not a given line intersects the convex hull, and the tangent queries to determine whether a given point is inside the convex hull. We give a lower bound on the amortized asymptotic time complexity that matches the performance of this data structure.
Differential privacy under continual observation
 In STOC
, 2010
"... Differential privacy is a recent notion of privacy tailored to privacypreserving data analysis [10]. Up to this point, research on differentially private data analysis has focused on the setting of a trusted curator holding a large, static, data set; thus every computation is a “oneshot ” object: ..."
Abstract

Cited by 63 (2 self)
 Add to MetaCart
(Show Context)
Differential privacy is a recent notion of privacy tailored to privacypreserving data analysis [10]. Up to this point, research on differentially private data analysis has focused on the setting of a trusted curator holding a large, static, data set; thus every computation is a “oneshot ” object: there is no point in computing something twice, since the result will be unchanged, up to any randomness introduced for privacy. However, many applications of data analysis involve repeated computations, either because the entire goal is one of monitoring, e.g., of traffic conditions, search trends, or incidence of influenza, or because the goal is some kind of adaptive optimization, e.g., placement of data to minimize access costs. In these cases, the algorithm must permit continual observation of the system’s state. We therefore initiate a study of differential privacy under continual observation. We identify the problem of maintaining a counter in a privacy preserving manner and show its wide applicability to many different problems.
Iterated Nearest Neighbors and Finding Minimal Polytopes
, 1994
"... Weintroduce a new method for finding several types of optimal kpoint sets, minimizing perimeter, diameter, circumradius, and related measures, by testing sets of the O(k) nearest neighbors to each point. We argue that this is better in a number of ways than previous algorithms, whichwere based o ..."
Abstract

Cited by 60 (6 self)
 Add to MetaCart
Weintroduce a new method for finding several types of optimal kpoint sets, minimizing perimeter, diameter, circumradius, and related measures, by testing sets of the O(k) nearest neighbors to each point. We argue that this is better in a number of ways than previous algorithms, whichwere based on high order Voronoi diagrams. Our technique allows us for the first time to efficiently maintain minimal sets as new points are inserted, to generalize our algorithms to higher dimensions, to find minimal convex kvertex polygons and polytopes, and to improvemany previous results. Weachievemany of our results via a new algorithm for finding rectilinear nearest neighbors in the plane in time O(n log n+kn). We also demonstrate a related technique for finding minimum area kpoint sets in the plane, based on testing sets of nearest vertical neighbors to each line segment determined by a pair of points. A generalization of this technique also allows us to find minimum volume and boundary measure sets in arbitrary dimensions.
Coresets for kMeans and kMedian Clustering and their Applications
 In Proc. 36th Annu. ACM Sympos. Theory Comput
, 2003
"... In this paper, we show the existence of small coresets for the problems of computing kmedian and kmeans clustering for points in low dimension. In other words, we show that given a point set P in IR , one can compute a weighted set S P , of size log n), such that one can compute the kmed ..."
Abstract

Cited by 58 (14 self)
 Add to MetaCart
In this paper, we show the existence of small coresets for the problems of computing kmedian and kmeans clustering for points in low dimension. In other words, we show that given a point set P in IR , one can compute a weighted set S P , of size log n), such that one can compute the kmedian/means clustering on S instead of on P , and get an (1 + ")approximation.
Geometric Range Searching
, 1994
"... In geometric range searching, algorithmic problems of the following type are considered: Given an npoint set P in the plane, build a data structure so that, given a query triangle R, the number of points of P lying in R can be determined quickly. Problems of this type are of crucial importance in c ..."
Abstract

Cited by 57 (3 self)
 Add to MetaCart
(Show Context)
In geometric range searching, algorithmic problems of the following type are considered: Given an npoint set P in the plane, build a data structure so that, given a query triangle R, the number of points of P lying in R can be determined quickly. Problems of this type are of crucial importance in computational geometry, as they can be used as subroutines in many seemingly unrelated algorithms. We present a survey of results and main techniques in this area.
Proximity Problems on Moving Points
 In Proc. 13th Annu. ACM Sympos. Comput. Geom
, 1997
"... A kinetic data structure for the maintenance of a multidimensional range search tree is introduced. This structure is used as a building block to obtain kinetic data structures for two classical geometric proximity problems in arbitrary dimensions: the first structure maintains the closest pair o ..."
Abstract

Cited by 54 (16 self)
 Add to MetaCart
A kinetic data structure for the maintenance of a multidimensional range search tree is introduced. This structure is used as a building block to obtain kinetic data structures for two classical geometric proximity problems in arbitrary dimensions: the first structure maintains the closest pair of a set of continuously moving points, and is provably e#cient. The second structure maintains a spanning tree of the moving points whose cost remains within some prescribed factor of the minimum spanning tree. The method for maintaining the closest pair of points can be extended to the maintenance of closest pair of other distance functions which allows us to maintain the closest pair of a set of moving objects with similar sizes and of a set of points on a smooth manifold.
An experimental analysis of selfadjusting computation
 In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI
, 2006
"... Selfadjusting computation uses a combination of dynamic dependence graphs and memoization to efficiently update the output of a program as the input changes incrementally or dynamically over time. Related work showed various theoretical results, indicating that the approach can be effective for a r ..."
Abstract

Cited by 51 (25 self)
 Add to MetaCart
Selfadjusting computation uses a combination of dynamic dependence graphs and memoization to efficiently update the output of a program as the input changes incrementally or dynamically over time. Related work showed various theoretical results, indicating that the approach can be effective for a reasonably broad range of applications. In this article, we describe algorithms and implementation techniques to realize selfadjusting computation and present an experimental evaluation of the proposed approach on a variety of applications, ranging from simple list primitives to more sophisticated computational geometry algorithms. The results of the experiments show that the approach is effective in practice, often offering orders of magnitude speedup from recomputing the output from scratch. We believe this is the first experimental evidence that incremental computation of any type is effective in practice for a reasonably broad set of applications.
Dynamizing static algorithms with applications to dynamic trees and history independence
 In ACMSIAM Symposium on Discrete Algorithms (SODA
, 2004
"... We describe a machine model for automatically dynamizing static algorithms and apply it to historyindependent data structures. Static programs expressed in this model are dynamized automatically by keeping track of dependences between code and data in the form of a dynamic dependence graph. To study ..."
Abstract

Cited by 46 (28 self)
 Add to MetaCart
(Show Context)
We describe a machine model for automatically dynamizing static algorithms and apply it to historyindependent data structures. Static programs expressed in this model are dynamized automatically by keeping track of dependences between code and data in the form of a dynamic dependence graph. To study the performance of such automatically dynamized algorithms we present an analysis technique based on trace stability. As an example of the use of the model, we dynamize the Parallel Tree Contraction Algorithm of Miller and Reif to obtain a historyindependent data structure for the dynamic trees problem of Sleator and Tarjan. 1
Searching dynamic point sets in spaces with bounded doubling dimension
 In The thirtyeighth annual ACM symposium on Theory of computing (STOC
, 2006
"... We present a new data structure that facilitates approximate nearest neighbor searches on a dynamic set of points in a metric space that has a bounded doubling dimension. Our data structure has linear size and supports insertions and deletions in O(log n) time, and finds a (1 + ɛ)approximate neares ..."
Abstract

Cited by 42 (15 self)
 Add to MetaCart
(Show Context)
We present a new data structure that facilitates approximate nearest neighbor searches on a dynamic set of points in a metric space that has a bounded doubling dimension. Our data structure has linear size and supports insertions and deletions in O(log n) time, and finds a (1 + ɛ)approximate nearest neighbor in time O(log n) +(1/ɛ) O(1). The search and update times hide multiplicative factors that depend on the doubling dimension; the space does not. These performance times are independent of the aspect ratio (or spread) of the points. Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]:Sorting and searching, computations on discrete structures; E.1 [Data Structures]:Graphs and networks, trees.