Results 1  10
of
89
Geometric Range Searching and Its Relatives
 CONTEMPORARY MATHEMATICS
"... ... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems. ..."
Abstract

Cited by 256 (40 self)
 Add to MetaCart
... process a set S of points in so that the points of S lying inside a query R region can be reported or counted quickly. Wesurvey the known techniques and data structures for range searching and describe their application to other related searching problems.
Making Data Structures Persistent
, 1989
"... This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any t ..."
Abstract

Cited by 250 (6 self)
 Add to MetaCart
This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any time. We develop simple, systematic, and effiient techniques for making linked data structures persistent. We use our techniques to devise persistent forms of binary search trees with logarithmic access, insertion, and deletion times and O(1) space bounds for insertion and deletion.
Spanning Trees and Spanners
, 1996
"... We survey results in geometric network design theory, including algorithms for constructing minimum spanning trees and lowdilation graphs. 1 Introduction This survey covers topics in geometric network design theory. The problem is easy to state: connect a collection of sites by a "good" network. ..."
Abstract

Cited by 143 (2 self)
 Add to MetaCart
We survey results in geometric network design theory, including algorithms for constructing minimum spanning trees and lowdilation graphs. 1 Introduction This survey covers topics in geometric network design theory. The problem is easy to state: connect a collection of sites by a "good" network. For instance, one may wish to connect components of a VLSI circuit by networks of wires, in a way that uses little surface area on the chip, draws little power, and propagates signals quickly. Similar problems come up in other applications such as telecommunications, road network design, and medical imaging [1]. One network design problem, the Traveling Salesman problem, is sufficiently important to have whole books devoted to it [79]. Problems involving some form of geometric minimum or maximum spanning tree also arise in the solution of other geometric problems such as clustering [12], mesh generation [56], and robot motion planning [93]. One can vary the network design problem in many w...
Fast construction of nets in lowdimensional metrics and their applications
 SIAM Journal on Computing
, 2006
"... We present a near linear time algorithm for constructing hierarchical nets in finite metric spaces with constant doubling dimension. This datastructure is then applied to obtain improved algorithms for the following problems: approximate nearest neighbor search, wellseparated pair decomposition, s ..."
Abstract

Cited by 98 (10 self)
 Add to MetaCart
We present a near linear time algorithm for constructing hierarchical nets in finite metric spaces with constant doubling dimension. This datastructure is then applied to obtain improved algorithms for the following problems: approximate nearest neighbor search, wellseparated pair decomposition, spanner construction, compact representation scheme, doubling measure, and computation of the (approximate) Lipschitz constant of a function. In all cases, the running (preprocessing) time is near linear and the space being used is linear. 1
Approximating extent measure of points
 Journal of ACM
"... We present a general technique for approximating various descriptors of the extent of a set of points in�when the dimension�is an arbitrary fixed constant. For a given extent measure�and a parameter��, it computes in time a subset�of size, with the property that. The specific applications of our tec ..."
Abstract

Cited by 96 (28 self)
 Add to MetaCart
We present a general technique for approximating various descriptors of the extent of a set of points in�when the dimension�is an arbitrary fixed constant. For a given extent measure�and a parameter��, it computes in time a subset�of size, with the property that. The specific applications of our technique include�approximation algorithms for (i) computing diameter, width, and smallest bounding box, ball, and cylinder of, (ii) maintaining all the previous measures for a set of moving points, and (iii) fitting spheres and cylinders through a point set. Our algorithms are considerably simpler, and faster in many cases, than previously known algorithms. 1
Range Searching
, 1996
"... Range searching is one of the central problems in computational geometry, because it arises in many applications and a wide variety of geometric problems can be formulated as a rangesearching problem. A typical rangesearching problem has the following form. Let S be a set of n points in R d , an ..."
Abstract

Cited by 70 (1 self)
 Add to MetaCart
Range searching is one of the central problems in computational geometry, because it arises in many applications and a wide variety of geometric problems can be formulated as a rangesearching problem. A typical rangesearching problem has the following form. Let S be a set of n points in R d , and let R be a family of subsets; elements of R are called ranges . We wish to preprocess S into a data structure so that for a query range R, the points in S " R can be reported or counted efficiently. Typical examples of ranges include rectangles, halfspaces, simplices, and balls. If we are only interested in answering a single query, it can be done in linear time, using linear space, by simply checking for each point p 2 S whether p lies in the query range.
OutputSensitive Results on Convex Hulls, Extreme Points, and Related Problems
, 1996
"... . We use known data structures for rayshooting and linearprogramming queries to derive new outputsensitive results on convex hulls, extreme points, and related problems. We show that the f face convex hull of an npoint set P in a fixed dimension d # 2 can be constructed in O(n log f + (nf) ..."
Abstract

Cited by 65 (13 self)
 Add to MetaCart
. We use known data structures for rayshooting and linearprogramming queries to derive new outputsensitive results on convex hulls, extreme points, and related problems. We show that the f face convex hull of an npoint set P in a fixed dimension d # 2 can be constructed in O(n log f + (nf) 11/(#d/2#+1) log O(1) n) time; this is optimal if f = O(n 1/#d/2# / log K n) for some sufficiently large constant K . We also show that the h extreme points of P can be computed in O(n log O(1) h + (nh) 11/(#d/2#+1) log O(1) n) time. These results are then applied to produce an algorithm that computes the vertices of all the convex layers of P in O(n 2# ) time for any constant #<2/(#d/2# 2 + 1). Finally, we obtain improved time bounds for other problems including levels in arrangements and linear programming with few violated constraints. In all of our algorithms the input is assumed to be in general position. 1. Introduction Let P be a set of n points in ddimen...
Geometric approximation via coresets
 Combinatorial and Computational Geometry, MSRI
, 2005
"... Abstract. The paradigm of coresets has recently emerged as a powerful tool for efficiently approximating various extent measures of a point set P. Using this paradigm, one quickly computes a small subset Q of P, called a coreset, that approximates the original set P and and then solves the problem o ..."
Abstract

Cited by 60 (7 self)
 Add to MetaCart
Abstract. The paradigm of coresets has recently emerged as a powerful tool for efficiently approximating various extent measures of a point set P. Using this paradigm, one quickly computes a small subset Q of P, called a coreset, that approximates the original set P and and then solves the problem on Q using a relatively inefficient algorithm. The solution for Q is then translated to an approximate solution to the original point set P. This paper describes the ways in which this paradigm has been successfully applied to various optimization and extent measure problems. 1.
Iterated Nearest Neighbors and Finding Minimal Polytopes
, 1994
"... Weintroduce a new method for finding several types of optimal kpoint sets, minimizing perimeter, diameter, circumradius, and related measures, by testing sets of the O(k) nearest neighbors to each point. We argue that this is better in a number of ways than previous algorithms, whichwere based o ..."
Abstract

Cited by 56 (6 self)
 Add to MetaCart
Weintroduce a new method for finding several types of optimal kpoint sets, minimizing perimeter, diameter, circumradius, and related measures, by testing sets of the O(k) nearest neighbors to each point. We argue that this is better in a number of ways than previous algorithms, whichwere based on high order Voronoi diagrams. Our technique allows us for the first time to efficiently maintain minimal sets as new points are inserted, to generalize our algorithms to higher dimensions, to find minimal convex kvertex polygons and polytopes, and to improvemany previous results. Weachievemany of our results via a new algorithm for finding rectilinear nearest neighbors in the plane in time O(n log n+kn). We also demonstrate a related technique for finding minimum area kpoint sets in the plane, based on testing sets of nearest vertical neighbors to each line segment determined by a pair of points. A generalization of this technique also allows us to find minimum volume and boundary measure sets in arbitrary dimensions.
Vertical decomposition of shallow levels in 3dimensional arrangements and its applications
 SIAM J. Comput
"... Let F be a collection of n bivariate algebraic functions of constant maximum degree. We show that the combinatorial complexity of the vertical decomposition of the ≤klevel of the arrangement A(F) is O(k 3+ε ψ(n/k)), for any ε> 0, where ψ(r) is the maximum complexity of the lower envelope of a subse ..."
Abstract

Cited by 54 (13 self)
 Add to MetaCart
Let F be a collection of n bivariate algebraic functions of constant maximum degree. We show that the combinatorial complexity of the vertical decomposition of the ≤klevel of the arrangement A(F) is O(k 3+ε ψ(n/k)), for any ε> 0, where ψ(r) is the maximum complexity of the lower envelope of a subset of at most r functions of F. This bound is nearly optimal in the worst case, and implies the existence of shallow cuttings, in the sense of [52], of small size in arrangements of bivariate algebraic functions. We also present numerous applications of these results, including: (i) data structures for several generalized threedimensional rangesearching problems; (ii) dynamic data structures for planar nearest and farthestneighbor searching under various fairly general distance functions; (iii) an improved (nearquadratic) algorithm for minimumweight bipartite Euclidean matching in the plane; and (iv) efficient algorithms for certain geometric optimization problems in static and dynamic settings.