Results 1 
5 of
5
Hilbert’s twentyfourth problem
 American Mathematical Monthly
, 2001
"... 1. INTRODUCTION. For geometers, Hilbert’s influential work on the foundations of geometry is important. For analysts, Hilbert’s theory of integral equations is just as important. But the address “Mathematische Probleme ” [37] that David Hilbert (1862– 1943) delivered at the second International Cong ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
1. INTRODUCTION. For geometers, Hilbert’s influential work on the foundations of geometry is important. For analysts, Hilbert’s theory of integral equations is just as important. But the address “Mathematische Probleme ” [37] that David Hilbert (1862– 1943) delivered at the second International Congress of Mathematicians (ICM) in Paris has tremendous importance for all mathematicians. Moreover, a substantial part of
Gödel on computability
"... Around 1950, both Gödel and Turing wrote papers for broader audiences. 1 Gödel drew in his 1951 dramatic philosophical conclusions from the general formulation of his second incompleteness theorem. These conclusions concerned the nature of mathematics and the human mind. The general formulation of t ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Around 1950, both Gödel and Turing wrote papers for broader audiences. 1 Gödel drew in his 1951 dramatic philosophical conclusions from the general formulation of his second incompleteness theorem. These conclusions concerned the nature of mathematics and the human mind. The general formulation of the second theorem was explicitly based on Turing’s 1936 reduction of finite procedures to machine computations. Turing gave in his 1954 an understated analysis of finite procedures in terms of Post production systems. This analysis, prima facie quite different from that given in 1936, served as the basis for an exposition of various unsolvable problems. Turing had addressed issues of mentality and intelligence in contemporaneous essays, the best known of which is of course Computing machinery and intelligence. Gödel’s and Turing’s considerations from this period intersect through their attempt, on the one hand, to analyze finite, mechanical procedures and, on the other hand, to approach mental phenomena in a scientific way. Neuroscience or brain science was an important component of the latter for both: Gödel’s remarks in the Gibbs Lecture as well as in his later conversations with Wang and Turing’s Intelligent Machinery can serve as clear evidence for that. 2 Both men were convinced that some mental processes are not mechanical, in the sense that Turing machines cannot mimic them. For Gödel, such processes were to be found in mathematical experience and he was led to the conclusion that mind is separate from matter. Turing simply noted that for a machine or a brain it is not enough to be converted into a universal (Turing) machine in order to become intelligent: “discipline”, the characteristic
Hilbert’s Program Then and Now
, 2005
"... Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and els ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Hilbert’s program is, in the first instance, a proposal and a research program in the philosophy and foundations of mathematics. It was formulated in the early 1920s by German mathematician David Hilbert (1862–1943), and was pursued by him and his collaborators at the University of Göttingen and elsewhere in the 1920s
BERNAYS AND SET THEORY
"... We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higherorder reflection principles. ..."
Abstract
 Add to MetaCart
We discuss the work of Paul Bernays in set theory, mainly his axiomatization and his use of classes but also his higherorder reflection principles.
BETWEEN THE FINITARY AND THE IDEAL
"... Within contemporary philosophy of mathematics there is a trend focussing on how mathematics is done and how it evolves, rather than how it should be done or how it should evolve. This fact is somewhat contrary to the philosophy of mathematics in the 20th century, which to a large extent was dominate ..."
Abstract
 Add to MetaCart
Within contemporary philosophy of mathematics there is a trend focussing on how mathematics is done and how it evolves, rather than how it should be done or how it should evolve. This fact is somewhat contrary to the philosophy of mathematics in the 20th century, which to a large extent was dominated by views developed during the socalled foundational crisis in the beginning of that very century. These views have primarily focused on questions pertaining to the logical structure of mathematics and questions regarding the justication and consistency of mathematics. Mathematicians and philosophers like Gottlob Frege (1848{1925), Bertrand Russell (1872{1970), David Hilbert (1862{1943), Kurt Godel (1906{1978) and others were very successful in their development of logic from around 1890 to, say, 1940 and they had a huge impact on the philosophy of mathematics of those days. Most probably it was Hilbert's program, rise and fall, which was the most single in
uential factor of the foundational studies until 1960's. Among the results was the widespread conception that the proper { if not the only { approach to philosophy of mathematics was through