Results 1 
2 of
2
Folding and Unfolding in Computational Geometry
"... Three open problems on folding/unfolding are discussed: (1) Can every convex polyhedron be cut along edges and unfolded at to a single nonoverlapping piece? (2) Given gluing instructions for a polygon, construct the unique 3D convex polyhedron to which itfolds. (3) Can every planar polygonal chain ..."
Abstract

Cited by 57 (4 self)
 Add to MetaCart
Three open problems on folding/unfolding are discussed: (1) Can every convex polyhedron be cut along edges and unfolded at to a single nonoverlapping piece? (2) Given gluing instructions for a polygon, construct the unique 3D convex polyhedron to which itfolds. (3) Can every planar polygonal chain be straightened?
When Can a Net Fold to a Polyhedron?
 In Proceedings of the 11th Canadian Conference on Computational Geometry
, 1999
"... this paper, we study the problem of whether a polyhedron can be obtained from a net , i.e., a polygon and a set of creases, by folding along the creases. We consider two cases, depending on whether we are given the dihedral angle at each crease. If these dihedral angles are given the problem can be ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
(Show Context)
this paper, we study the problem of whether a polyhedron can be obtained from a net , i.e., a polygon and a set of creases, by folding along the creases. We consider two cases, depending on whether we are given the dihedral angle at each crease. If these dihedral angles are given the problem can be solved in polynomial time by the simple expedient of performing the folding. If the dihedral angles are not given the problem is NPcomplete, at least for orthogonal polyhedra. We then turn to the actual folding process, and show an example of a net with rigid faces that can, in the sense above, be folded to form an orthogonal polyhedron, but only by allowing faces to intersect each other during the folding process.