Results 1  10
of
161
Deterministic and Stochastic Models for Coalescence (Aggregation, Coagulation): a Review of the MeanField Theory for Probabilists
 Bernoulli
, 1997
"... Consider N particles, which merge into clusters according to the rule: a cluster of size x and a cluster of size y merge at (stochastic) rate K(x; y)=N , where K is a specified rate kernel. This MarcusLushnikov model of stochastic coalescence, and the underlying deterministic approximation given by ..."
Abstract

Cited by 137 (12 self)
 Add to MetaCart
Consider N particles, which merge into clusters according to the rule: a cluster of size x and a cluster of size y merge at (stochastic) rate K(x; y)=N , where K is a specified rate kernel. This MarcusLushnikov model of stochastic coalescence, and the underlying deterministic approximation given by the Smoluchowski coagulation equations, have an extensive scientific literature. Some mathematical literature (Kingman's coalescent in population genetics; component sizes in random graphs) implicitly studies the special cases K(x; y) = 1 and K(x; y) = xy. We attempt a wideranging survey. General kernels are only now starting to be studied rigorously, so many interesting open problems appear. Keywords. branching process, coalescence, continuum tree, densitydependent Markov process, gelation, random graph, random tree, Smoluchowski coagulation equation Research supported by N.S.F. Grant DMS9622859 1 Introduction Models, implicitly or explicitly stochastic, of coalescence (= coagulati...
A random walk construction of uniform spanning trees and uniform labelled trees
 SIAM Journal on Discrete Mathematics
, 1990
"... Abstract A random walk on a finite graph can be used to construct a uniformrandom spanning tree. We show how random walk techniques can be applied to the study of several properties of the uniform randomspanning tree: the proportion of leaves, the distribution of degrees, and the diameter. ..."
Abstract

Cited by 82 (3 self)
 Add to MetaCart
Abstract A random walk on a finite graph can be used to construct a uniformrandom spanning tree. We show how random walk techniques can be applied to the study of several properties of the uniform randomspanning tree: the proportion of leaves, the distribution of degrees, and the diameter.
Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transferimpedances
, 1993
"... Let G be a finite graph or an infinite graph on which Z d acts with finite fundamental domain. If G is finite, let T be a random spanning tree chosen uniformly from all spanning trees of G; if G is infinite, methods from [Pem] show that this still makes sense, producing a random essential spanning f ..."
Abstract

Cited by 81 (0 self)
 Add to MetaCart
Let G be a finite graph or an infinite graph on which Z d acts with finite fundamental domain. If G is finite, let T be a random spanning tree chosen uniformly from all spanning trees of G; if G is infinite, methods from [Pem] show that this still makes sense, producing a random essential spanning forest of G. A method for calculating local characteristics (i.e. finitedimensional marginals) of T from the transferimpedance matrix is presented. This differs from the classical matrixtree theorem in that only small pieces of the matrix (ndimensional minors) are needed to compute small (ndimensional) marginals. Calculation of the matrix entries relies on the calculation of the Green’s function for G, which is not a local calculation. However, it is shown how the calculation of the Green’s function may be reduced to a finite computation in the case when G is an infinite graph admitting a Z daction with finite quotient. The same computation also gives the entropy of the law of T. These results are applied to the problem of tiling certain lattices by dominos – the socalled dimer problem. Another application of these results is to prove modified versions of conjectures of Aldous [Al2] on the limiting distribution of degrees of a vertex and on the local structure near a vertex of a uniform random spanning tree in a lattice whose dimension is going to infinity. Included is a generalization of moments to treevalued random variables and criteria for these generalized moments to determine a distribution.
Random trees, Lévy processes and spatial branching processes
 Astérisque
"... 0.1 Discrete trees................................ 5 0.2 GaltonWatson trees............................ 7 0.3 The continuous height process....................... 9 0.4 From discrete to continuous trees..................... 12 ..."
Abstract

Cited by 73 (3 self)
 Add to MetaCart
0.1 Discrete trees................................ 5 0.2 GaltonWatson trees............................ 7 0.3 The continuous height process....................... 9 0.4 From discrete to continuous trees..................... 12
On The Contour Of Random Trees
 SIAM J. Discrete Math
"... Two stochastic processes describing the contour of simply generated random trees are studied: the contour process as defined by Gutjahr and Pflug [9] and the traverse process constructed of the node heights during preorder traversal of the tree. Using multivariate generating functions and singulari ..."
Abstract

Cited by 64 (20 self)
 Add to MetaCart
Two stochastic processes describing the contour of simply generated random trees are studied: the contour process as defined by Gutjahr and Pflug [9] and the traverse process constructed of the node heights during preorder traversal of the tree. Using multivariate generating functions and singularity analysis the weak convergence of the contour process to Brownian excursion is shown and a new proof of the analogous result for the traverse process is obtained. 1.
The Standard Additive Coalescent
, 1997
"... Regard an element of the set \Delta := f(x 1 ; x 2 ; : : :) : x 1 x 2 : : : 0; X i x i = 1g as a fragmentation of unit mass into clusters of masses x i . The additive coalescent of Evans and Pitman (1997) is the \Deltavalued Markov process in which pairs of clusters of masses fx i ; x j g mer ..."
Abstract

Cited by 62 (22 self)
 Add to MetaCart
Regard an element of the set \Delta := f(x 1 ; x 2 ; : : :) : x 1 x 2 : : : 0; X i x i = 1g as a fragmentation of unit mass into clusters of masses x i . The additive coalescent of Evans and Pitman (1997) is the \Deltavalued Markov process in which pairs of clusters of masses fx i ; x j g merge into a cluster of mass x i +x j at rate x i +x j . They showed that a version (X 1 (t); \Gamma1 ! t ! 1) of this process arises as a n !1 weak limit of the process started at time \Gamma 1 2 log n with n clusters of mass 1=n. We show this standard additive coalescent may be constructed from the continuum random tree of Aldous (1991,1993) by Poisson splitting along the skeleton of the tree. We describe the distribution of X 1 (t) on \Delta at a fixed time t. We show that the size of the cluster containing a given atom, as a process in t, has a simple representation in terms of the stable subordinator of index 1=2. As t ! \Gamma1, we establish a Gaussian limit for (centered and norm...
Probabilistic and fractal aspects of Lévy trees
 Probab. Th. Rel. Fields
, 2005
"... We investigate the random continuous trees called Lévy trees, which are obtained as scaling limits of discrete GaltonWatson trees. We give a mathematically precise definition of these random trees as random variables taking values in the set of equivalence classes of compact rooted Rtrees, which i ..."
Abstract

Cited by 48 (14 self)
 Add to MetaCart
We investigate the random continuous trees called Lévy trees, which are obtained as scaling limits of discrete GaltonWatson trees. We give a mathematically precise definition of these random trees as random variables taking values in the set of equivalence classes of compact rooted Rtrees, which is equipped with the GromovHausdorff distance. To construct Lévy trees, we make use of the coding by the height process which was studied in detail in previous work. We then investigate various probabilistic properties of Lévy trees. In particular we establish a branching property analogous to the wellknown property for GaltonWatson trees: Conditionally given the tree below level a, the subtrees originating from that level are distributed as the atoms of a Poisson point measure whose intensity involves a local time measure supported on the vertices at distance a from the root. We study regularity properties of local times in the space variable, and prove that the support of local time is the full level set, except for certain exceptional values of a corresponding to local extinctions. We also compute several fractal dimensions of Lévy trees, including Hausdorff and packing dimensions, in terms of lower and upper indices for the branching
Rayleigh processes, real trees, and root growth with regrafting
, 2004
"... Abstract. The real trees form a class of metric spaces that extends the class of trees with edge lengths by allowing behavior such as infinite total edge length and vertices with infinite branching degree. Aldous’s Brownian continuum random tree, the random treelike object naturally associated with ..."
Abstract

Cited by 47 (11 self)
 Add to MetaCart
Abstract. The real trees form a class of metric spaces that extends the class of trees with edge lengths by allowing behavior such as infinite total edge length and vertices with infinite branching degree. Aldous’s Brownian continuum random tree, the random treelike object naturally associated with a standard Brownian excursion, may be thought of as a random compact real tree. The continuum random tree is a scaling limit as N → ∞ of both a critical GaltonWatson tree conditioned to have total population size N as well as a uniform random rooted combinatorial tree with N vertices. The Aldous–Broder algorithm is a Markov chain on the space of rooted combinatorial trees with N vertices that has the uniform tree as its stationary distribution. We construct and study a Markov process on the space of all rooted compact real trees that has the continuum random tree as its stationary distribution and arises as the scaling limit as N → ∞ of the Aldous–Broder chain. A key technical ingredient in this work is the use of a pointed Gromov–
Enumerations Of Trees And Forests Related To Branching Processes And Random Walks
 Microsurveys in Discrete Probability, number 41 in DIMACS Ser. Discrete Math. Theoret. Comp. Sci
, 1997
"... In a GaltonWatson branching process with offspring distribution (p 0 ; p 1 ; : : :) started with k individuals, the distribution of the total progeny is identical to the distribution of the first passage time to \Gammak for a random walk started at 0 which takes steps of size j with probability p ..."
Abstract

Cited by 37 (14 self)
 Add to MetaCart
In a GaltonWatson branching process with offspring distribution (p 0 ; p 1 ; : : :) started with k individuals, the distribution of the total progeny is identical to the distribution of the first passage time to \Gammak for a random walk started at 0 which takes steps of size j with probability p j+1 for j \Gamma1. The formula for this distribution is a probabilistic expression of the Lagrange inversion formula for the coefficients in the power series expansion of f(z) k in terms of those of g(z) for f(z) defined implicitly by f(z) = zg(f(z)). The Lagrange inversion formula is the analytic counterpart of various enumerations of trees and forests which generalize Cayley's formula kn n\Gammak\Gamma1 for the number of rooted forests labeled by a set of size n whose set of roots is a particular subset of size k. These known results are derived by elementary combinatorial methods without appeal to the Lagrange formula, which is then obtained as a byproduct. This approach unifies an...