Results 1  10
of
55
Fullyfunctional succinct trees
 In Proc. 21st SODA
, 2010
"... We propose new succinct representations of ordinal trees, which have been studied extensively. It is known that any nnode static tree can be represented in 2n + o(n) bits and a large number of operations on the tree can be supported in constant time under the wordRAM model. However existing data s ..."
Abstract

Cited by 54 (20 self)
 Add to MetaCart
(Show Context)
We propose new succinct representations of ordinal trees, which have been studied extensively. It is known that any nnode static tree can be represented in 2n + o(n) bits and a large number of operations on the tree can be supported in constant time under the wordRAM model. However existing data structures are not satisfactory in both theory and practice because (1) the lowerorder term is Ω(nlog log n / log n), which cannot be neglected in practice, (2) the hidden constant is also large, (3) the data structures are complicated and difficult to implement, and (4) the techniques do not extend to dynamic trees supporting insertions and deletions of nodes. We propose a simple and flexible data structure, called the range minmax tree, that reduces the large number of relevant tree operations considered in the literature to a few primitives, which are carried out in constant time on sufficiently small trees. The result is then extended to trees of arbitrary size, achieving 2n + O(n/polylog(n)) bits of space. The redundancy is significantly lower than in any previous proposal, and the data structure is easily implemented. Furthermore, using the same framework, we derive the first fullyfunctional dynamic succinct trees. 1
Practical rank/select queries over arbitrary sequences
 In Proc. 15th SPIRE, LNCS 5280
, 2008
"... Abstract. We present a practical study on the compact representation of sequences supporting rank, select, and access queries. While there are several theoretical solutions to the problem, only a few have been tried out, and there is little idea on how the others would perform, especially in the cas ..."
Abstract

Cited by 42 (26 self)
 Add to MetaCart
(Show Context)
Abstract. We present a practical study on the compact representation of sequences supporting rank, select, and access queries. While there are several theoretical solutions to the problem, only a few have been tried out, and there is little idea on how the others would perform, especially in the case of sequences with very large alphabets. We first present a new practical implementation of the compressed representation for bit sequences proposed by Raman, Raman, and Rao [SODA 2002], that is competitive with the existing ones when the sequences are not too compressible. It also has nice local compression properties, and we show that this makes it an excellent tool for compressed text indexing in combination with the BurrowsWheeler transform. This shows the practicality of a recent theoretical proposal [Mäkinen and Navarro, SPIRE 2007], achieving spaces never seen before. Second, for general sequences, we tune wavelet trees for the case of very large alphabets, by removing their pointer information. We show that this gives an excellent solution for representing a sequence within zeroorder entropy space, in cases where the large alphabet poses a serious challenge to typical encoding methods. We also present the first implementation of Golynski et al.’s representation [SODA 2006], which offers another interesting time/space tradeoff. 1
A simple storage scheme for strings achieving entropy bounds
, 2007
"... We propose a storage scheme for a string S[1, n], drawn from an alphabet Σ, that requires space close to the kth order empirical entropy of S, and allows to retrieve any ℓlong substring of S in optimal O(1 + ..."
Abstract

Cited by 39 (6 self)
 Add to MetaCart
We propose a storage scheme for a string S[1, n], drawn from an alphabet Σ, that requires space close to the kth order empirical entropy of S, and allows to retrieve any ℓlong substring of S in optimal O(1 +
Compressed representations of permutations, and applications
 SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE
"... We explore various techniques to compress a permutation π over n integers, taking advantage of ordered subsequences in π, while supporting its application π(i) and the application of its inverse π −1 (i) in small time. Our compression schemes yield several interesting byproducts, in many cases mat ..."
Abstract

Cited by 30 (17 self)
 Add to MetaCart
We explore various techniques to compress a permutation π over n integers, taking advantage of ordered subsequences in π, while supporting its application π(i) and the application of its inverse π −1 (i) in small time. Our compression schemes yield several interesting byproducts, in many cases matching, improving or extending the best existing results on applications such as the encoding of a permutation in order to support iterated applications π k (i) of it, of integer functions, and of inverted lists and suffix arrays.
Alphabet Partitioning for Compressed Rank/Select and Applications
"... Abstract. We present a data structure that stores a string s[1..n] over the alphabet [1..σ] in nH0(s) + o(n)(H0(s)+1) bits, where H0(s) is the zeroorder entropy of s. This data structure supports the queries access and rank in time O (lg lg σ), and the select query in constant time. This result imp ..."
Abstract

Cited by 28 (19 self)
 Add to MetaCart
(Show Context)
Abstract. We present a data structure that stores a string s[1..n] over the alphabet [1..σ] in nH0(s) + o(n)(H0(s)+1) bits, where H0(s) is the zeroorder entropy of s. This data structure supports the queries access and rank in time O (lg lg σ), and the select query in constant time. This result improves on previously known data structures using nH0(s) + o(n lg σ) bits, where on highly compressible instances the redundancy o(n lg σ) cease to be negligible compared to the nH0(s) bits that encode the data. The technique is based on combining previous results through an ingenious partitioning of the alphabet, and practical enough to be implementable. It applies not only to strings, but also to several other compact data structures. For example, we achieve (i) faster search times and lower redundancy for the smallest existing fulltext selfindex; (ii) compressed permutations π with times for π() and π −1 () improved to loglogarithmic; and (iii) the first compressed representation of dynamic collections of disjoint sets. 1
A Fast and Compact Web Graph Representation
"... Compressed graphs representation has become an attractive research topic because of its applications in the manipulation of huge Web graphs in main memory. By far the best current result is the technique by Boldi and Vigna, which takes advantage of several particular properties of Web graphs. In t ..."
Abstract

Cited by 28 (15 self)
 Add to MetaCart
(Show Context)
Compressed graphs representation has become an attractive research topic because of its applications in the manipulation of huge Web graphs in main memory. By far the best current result is the technique by Boldi and Vigna, which takes advantage of several particular properties of Web graphs. In this paper we show that the same properties can be exploited with a different and elegant technique, built on RePair compression, which achieves about the same space but much faster navigation of the graph. Moreover, the technique has the potential of adapting well to secondary memory. In addition, we introduce an approximate RePair version that works efficiently with limited main memory.
Colored Range Queries and Document Retrieval
"... Colored range queries are a wellstudied topic in computational geometry and database research that, in the past decade, have found exciting applications in information retrieval. In this paper we give improved time and space bounds for three important onedimensional colored range queries — colore ..."
Abstract

Cited by 26 (14 self)
 Add to MetaCart
Colored range queries are a wellstudied topic in computational geometry and database research that, in the past decade, have found exciting applications in information retrieval. In this paper we give improved time and space bounds for three important onedimensional colored range queries — colored range listing, colored range topk queries and colored range counting — and, thus, new bounds for various document retrieval problems on general collections of sequences. Specifically, we first describe a framework including almost all recent results on colored range listing and document listing, which suggests new combinations of data structures for these problems. For example, we give the fastest compressed data structures for colored range listing and document listing, and an efficient data structure for document listing whose size is bounded in terms of the highorder entropies of the library of documents. We then show how (approximate) colored topk queries can be reduced to (approximate) rangemode queries on subsequences, yielding the first efficient data structure for this problem. Finally, we show how a modified wavelet tree can support colored range counting in logarithmic time and space that is succinct whenever the number of colors is superpolylogarithmic in the length of the sequence.
Succinct Orthogonal Range Search Structures on a Grid with Applications to Text Indexing
"... We present a succinct representation of a set of n points on an n × n grid using n lg n + o(nlg n) bits 3 to support orthogonal range counting in O(lg n / lg lg n) time, and range reporting in O(k lg n/lg lg n) time, where k is the size of the output. This achieves an improvement on query time by ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
(Show Context)
We present a succinct representation of a set of n points on an n × n grid using n lg n + o(nlg n) bits 3 to support orthogonal range counting in O(lg n / lg lg n) time, and range reporting in O(k lg n/lg lg n) time, where k is the size of the output. This achieves an improvement on query time by a factor of lg lg n upon the previous result of Mäkinen and Navarro [15], while using essentially the informationtheoretic minimum space. Our data structure not only can be used as a key component in solutions to the general orthogonal range search problem to save storage cost, but also has applications in text indexing. In particular, we apply it to improve two previous spaceefficient text indexes that support substring search [7] and positionrestricted substring search [15]. We also use it to extend previous results on succinct representations of sequences of small integers, and to design succinct data structures supporting certain types of orthogonal range query in the plane.
Fullyfunctional static and dynamic succinct trees
, 2010
"... We propose new succinct representations of ordinal trees, which have been studied extensively. It is known that any nnode static tree can be represented in 2n + o(n) bits and various operations on the tree can be supported in constant time under the wordRAM model. However the data structures are c ..."
Abstract

Cited by 22 (12 self)
 Add to MetaCart
We propose new succinct representations of ordinal trees, which have been studied extensively. It is known that any nnode static tree can be represented in 2n + o(n) bits and various operations on the tree can be supported in constant time under the wordRAM model. However the data structures are complicated and difficult to dynamize. We propose a simple and flexible data structure, called the range minmax tree, that reduces the large number of relevant tree operations considered in the literature, to a few primitives that are carried out in constant time on sufficiently small trees. The result is extended to trees of arbitrary size, achieving 2n + O(n/polylog(n)) bits of space. The redundancy is significantly lower than any previous proposal. For the dynamic case, where insertion/deletion of nodes is allowed, the existing data structures support very limited operations. Our data structure builds on the range minmax tree to achieve 2n + O(n / log n) bits of space and O(log n) time for all the operations. We also propose an improved data structure using 2n+O(n loglog n / logn) bits and improving the time to O(log n / loglog n) for most operations.
Alphabetindependent compressed text indexing
 In ESA
, 2011
"... Abstract. Selfindexes can represent a text in asymptotically optimal space under the kth order entropy model, give access to text substrings, and support indexed pattern searches. Their time complexities are not optimal, however: they always depend on the alphabet size. In this paper we achieve, f ..."
Abstract

Cited by 22 (15 self)
 Add to MetaCart
(Show Context)
Abstract. Selfindexes can represent a text in asymptotically optimal space under the kth order entropy model, give access to text substrings, and support indexed pattern searches. Their time complexities are not optimal, however: they always depend on the alphabet size. In this paper we achieve, for the first time, full alphabetindependence in the time complexities of selfindexes, while retaining space optimality. We obtain also some relevant byproducts on compressed suffix trees. 1