Results 1  10
of
1,007
Shape Matching and Object Recognition Using Shape Contexts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform ..."
Abstract

Cited by 1246 (19 self)
 Add to MetaCart
We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform. In order to solve the correspondence problem, we attach a descriptor, the shape context, to each point. The shape context at a reference point captures the distribution of the remaining points relative to it, thus offering a globally discriminative characterization. Corresponding points on two similar shapes will have similar shape con texts, enabling us to solve for correspondences as an optimal assignment problem. Given the point correspondences, we estimate the transformation that best aligns the two shapes; reg ularized thin plate splines provide a flexible class of transformation maps for this purpose. The dissimilarity between the two shapes is computed as a sum of matching errors between corresponding points, together with a term measuring the magnitude of the aligning trans form. We treat recognition in a nearestneighbor classification framework as the problem of finding the stored prototype shape that is maximally similar to that in the image. Results are presented for silhouettes, trademarks, handwritten digits and the COIL dataset.
A new approach to the maximum flow problem
 Journal of the ACM
, 1988
"... Abstract. All previously known efftcient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based on ..."
Abstract

Cited by 512 (31 self)
 Add to MetaCart
Abstract. All previously known efftcient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the preflow concept of Karzanov is introduced. A preflow is like a flow, except that the total amount flowing into a vertex is allowed to exceed the total amount flowing out. The method maintains a preflow in the original network and pushes local flow excess toward the sink along what are estimated to be shortest paths. The algorithm and its analysis are simple and intuitive, yet the algorithm runs as fast as any other known method on dense. graphs, achieving an O(n)) time bound on an nvertex graph. By incorporating the dynamic tree data structure of Sleator and Tarjan, we obtain a version of the algorithm running in O(nm log(n’/m)) time on an nvertex, medge graph. This is as fast as any known method for any graph density and faster on graphs of moderate density. The algorithm also admits efticient distributed and parallel implementations. A parallel implementation running in O(n’log n) time using n processors and O(m) space is obtained. This time bound matches that of the ShiloachVishkin algorithm, which also uses n processors but requires O(n’) space.
A greedy randomized adaptive search procedure for the 2partition problem
 Operations Research
, 1994
"... Abstract. Today, a variety of heuristic approaches are available to the operations research practitioner. One methodology that has a strong intuitive appeal, a prominent empirical track record, and is trivial to efficiently implement on parallel processors is GRASP (Greedy Randomized Adaptive Search ..."
Abstract

Cited by 478 (75 self)
 Add to MetaCart
Abstract. Today, a variety of heuristic approaches are available to the operations research practitioner. One methodology that has a strong intuitive appeal, a prominent empirical track record, and is trivial to efficiently implement on parallel processors is GRASP (Greedy Randomized Adaptive Search Procedures). GRASP is an iterative randomized sampling technique in which each iteration provides a solution to the problem at hand. The incumbent solution over all GRASP iterations is kept as the final result. There are two phases within each GRASP iteration: the first intelligently constructs an initial solution via an adaptive randomized greedy function; the second applies a local search procedure to the constructed solution in hope of finding an improvement. In this paper, we define the various components comprising a GRASP and demonstrate, step by step, how to develop such heuristics for combinatorial optimization problems. Intuitive justifications for the observed empirical behavior of the methodology are discussed. The paper concludes with a brief literature review of GRASP implementations and mentions two industrial applications.
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 298 (1 self)
 Add to MetaCart
This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that has been contaminated with additive noise, the goal is to identify which elementary signals participated and to approximate their coefficients. Although many algorithms have been proposed, there is little theory which guarantees that these algorithms can accurately and efficiently solve the problem. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure that convex relaxation succeeds. As evidence of the broad impact of these results, the paper describes how convex relaxation can be used for several concrete signal recovery problems. It also describes applications to channel coding, linear regression, and numerical analysis.
Centroidal Voronoi tessellations: Applications and algorithms
 SIAM Rev
, 1999
"... Abstract. A centroidal Voronoi tessellation is a Voronoi tessellation whose generating points are the centroids (centers of mass) of the corresponding Voronoi regions. We give some applications of such tessellations to problems in image compression, quadrature, finite difference methods, distributio ..."
Abstract

Cited by 237 (25 self)
 Add to MetaCart
Abstract. A centroidal Voronoi tessellation is a Voronoi tessellation whose generating points are the centroids (centers of mass) of the corresponding Voronoi regions. We give some applications of such tessellations to problems in image compression, quadrature, finite difference methods, distribution of resources, cellular biology, statistics, and the territorial behavior of animals. We discuss methods for computing these tessellations, provide some analyses concerning both the tessellations and the methods for their determination, and, finally, present the results of some numerical experiments.
On the Effectiveness of RouteBased Packet Filtering for Distributed DoS Attack Prevention in PowerLaw Internets
 In Proc. ACM SIGCOMM
, 2001
"... Denial of service (DoS) attack on the Internet has become a pressing problem. In this paper, we describe and evaluate routebased distributed packet filtering (DPF), a novel approach to distributed DoS (DDoS) attack prevention. We show that DPF achieves proactiveness and scalability, and we show tha ..."
Abstract

Cited by 231 (6 self)
 Add to MetaCart
Denial of service (DoS) attack on the Internet has become a pressing problem. In this paper, we describe and evaluate routebased distributed packet filtering (DPF), a novel approach to distributed DoS (DDoS) attack prevention. We show that DPF achieves proactiveness and scalability, and we show that there is an intimate relationship between the effectiveness of DPF at mitigating DDoS attack and powerlaw network topology. The salient features of this work are twofold. First, we show that DPF is able to proactively filter out a significant fraction of spoofed packet flows and prevent attack packets from reaching their targets in the first place. The IP flows that cannot be proactively curtailed are extremely sparse so that their origin can be localizedi.e., IP traceback to within a small, constant number of candidate sites. We show that the two proactive and reactive performance effects can be achieved by implementing routebased filtering on less than 20% of Internet autonomous system (AS) sites. Second, we show that the two complementary performance measures are dependent on the properties of the underlying AS graph. In particular, we show that the powerlaw structure of Internet AS topology leads to connectivity properties which are crucial in facilitating the observed performance effects.
The impact of imperfect scheduling on crosslayer congestion control in wireless networks
, 2005
"... In this paper, we study crosslayer design for congestion control in multihop wireless networks. In previous work, we have developed an optimal crosslayer congestion control scheme that jointly computes both the rate allocation and the stabilizing schedule that controls the resources at the under ..."
Abstract

Cited by 226 (15 self)
 Add to MetaCart
In this paper, we study crosslayer design for congestion control in multihop wireless networks. In previous work, we have developed an optimal crosslayer congestion control scheme that jointly computes both the rate allocation and the stabilizing schedule that controls the resources at the underlying layers. However, the scheduling component in this optimal crosslayer congestion control scheme has to solve a complex global optimization problem at each time, and is hence too computationally expensive for online implementation. In this paper, we study how the performance of crosslayer congestion control will be impacted if the network can only use an imperfect (and potentially distributed) scheduling component that is easier to implement. We study both the case when the number of users in the system is fixed and the case with dynamic arrivals and departures of the users, and we establish performance bounds of crosslayer congestion control with imperfect scheduling. Compared with a layered approach that does not design congestion control and scheduling together, our crosslayer approach has provably better performance bounds, and substantially outperforms the layered approach. The insights drawn from our analyses also enable us to design a fully distributed crosslayer congestion control and scheduling algorithm for a restrictive interference model.
Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors
, 1999
"... Devices]: Modes of ComputationParallelism and concurrency General Terms: Algorithms, Design, Performance, Theory Additional Key Words and Phrases: Automatic parallelization, DAG, multiprocessors, parallel processing, software tools, static scheduling, task graphs This research was supported ..."
Abstract

Cited by 206 (4 self)
 Add to MetaCart
Devices]: Modes of ComputationParallelism and concurrency General Terms: Algorithms, Design, Performance, Theory Additional Key Words and Phrases: Automatic parallelization, DAG, multiprocessors, parallel processing, software tools, static scheduling, task graphs This research was supported by the Hong Kong Research Grants Council under contract numbers HKUST 734/96E, HKUST 6076/97E, and HKU 7124/99E. Authors' addresses: Y.K. Kwok, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong; email: ykwok@eee.hku.hk; I. Ahmad, Department of Computer Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong. Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and / or a fee. 2000 ACM 03600300/99/12000406 $5.00 ACM Computing Surveys, Vol. 31, No. 4, December 1999 1.
On the computation of multidimensional aggregates
 IN PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON VERY LARGE DATABASES
, 1996
"... At the heart of all OLAP or multidimensional data analysis applications is the ability to simultaneously aggregate across many sets of dimensions. Computing multidimensional aggregates is a performance bottleneck for these applications. This paper presents fast algorithms for computing a collection ..."
Abstract

Cited by 205 (18 self)
 Add to MetaCart
At the heart of all OLAP or multidimensional data analysis applications is the ability to simultaneously aggregate across many sets of dimensions. Computing multidimensional aggregates is a performance bottleneck for these applications. This paper presents fast algorithms for computing a collection of groupbys. We focus on a special case of the aggregation problem  computation of the CUBE operator. The CUBE operator requires computing groupbys on all possible combinations of a list of attributes, and is equivalent to the union of a number of standard groupby operations. We show howthe structure of CUBE computation can be viewed in terms of a hierarchy of groupby operations. Our algorithms extend sortbased and hashbased grouping methods with several optimizations, like combining common operations across multiple groupbys, caching, and using precomputed groupbys for computing other groupbys. Empirical evaluation shows that the resulting algorithms give much better performance compared to straightforward methods. This paper combines work done concurrently on computing the data cube by two different teams as reported in [SAG96] and [DANR96].
Why Bounded Rationality
 Journal of Economic Literature
, 1996
"... Rothschild, and three most helpful referees. Very special thanks for many years of helpful insights are due to Richard Day and Luigi Ermini. Hamlet: “What a piece of work is a man! how noble in reason! how infinite in faculties!” ..."
Abstract

Cited by 205 (0 self)
 Add to MetaCart
Rothschild, and three most helpful referees. Very special thanks for many years of helpful insights are due to Richard Day and Luigi Ermini. Hamlet: “What a piece of work is a man! how noble in reason! how infinite in faculties!”