Results 1 
6 of
6
Quantum computing with trapped ions
, 2008
"... Quantum computers hold the promise to solve certain computational task much more efficiently than classical computers. We review the recent experimental advancements towards a quantum computer with trapped ions. In particular, various implementations of qubits, quantum gates and some key experiments ..."
Abstract

Cited by 17 (2 self)
 Add to MetaCart
Quantum computers hold the promise to solve certain computational task much more efficiently than classical computers. We review the recent experimental advancements towards a quantum computer with trapped ions. In particular, various implementations of qubits, quantum gates and some key experiments are discussed. Furthermore, we review some implementations of quantum algorithms such as a deterministic teleportation of quantum information and an error correction scheme.
Automated Generation of Layout and Control for Quantum Circuits
 In Proc. of ACM Intl. Conf. on Computing Frontiers
, 2007
"... We present a computeraided design flow for quantum circuits, complete with automatic layout and control logic extraction. To motivate automated layout for quantum circuits, we investigate gridbased layouts and show a performance variance of four times as we vary grid structure and initial qubit pl ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
We present a computeraided design flow for quantum circuits, complete with automatic layout and control logic extraction. To motivate automated layout for quantum circuits, we investigate gridbased layouts and show a performance variance of four times as we vary grid structure and initial qubit placement. We then propose two polynomialtime design heuristics: a greedy algorithm suitable for small, congestionfree quantum circuits and a dataflowbased analysis approach to placement and routing with implicit initial placement of qubits. Finally, we show that our dataflowbased heuristic generates better layouts than the stateoftheart automated gridbased layout and scheduling mechanism in terms of latency and potential pipelinability, but at the cost of some area. 1
Detection and Control of Individual Trapped Ions and Neutral Atoms
, 2008
"... ii ..."
(Show Context)
ABSTRACT Title of dissertation: QUANTUM INFORMATION PROCESSING WITH TRAPPED ION CHAINS
"... Trapped atomic ion systems are currently the most advanced platform for quantum information processing. Their long coherence times, pristine state initialization and detection, and precisely controllable and versatile interactions make them excellent quantum systems for experiments in quantum compu ..."
Abstract
 Add to MetaCart
(Show Context)
Trapped atomic ion systems are currently the most advanced platform for quantum information processing. Their long coherence times, pristine state initialization and detection, and precisely controllable and versatile interactions make them excellent quantum systems for experiments in quantum computation and quantum simulation. One of the more promising schemes for quantum computing consists of performing single and multiqubit quantum gates on qubits in a linear ion crystal. Some of the key challenges of scaling such a system are the individual addressing of arbitrary subsets of ions and controlling the growing complexity of motional mode interactions as the number of qubits increases or when the gates are performed faster. Traditional entangling quantum gates between ion qubits use laser pulses to couple the qubit states to the collective motion of the crystal, thereby generating a spinspin interaction that can produce entanglement between selected qubits. The intrinsic limitations on the performance of gates using this method can be alleviated by applying optimally shaped pulses instead of pulses with constant amplitude. This thesis explains the theory behind this pulse shaping scheme and how it is implemented on a chain of 171Yb+ ions held in a linear radiofrequency ‘Paul ’ trap. Several experiments demonstrate the technique in chains of two, three, and five ions using various types of pulse shapes. A tightly focused individual addressing beam allows us to apply the entangling gates to a target pair of ions, and technical issues related to such tight focusing are discussed. Other advantages to the pulse shaping scheme include a robustness against detuning errors and the possibility of suppressing undesirable coupling due to optical spillover on neighboring ions. Combined with ion shuttling, we harness these features to perform sequential gates to different qubit pairs in order to create genuine tripartite entangled states and demonstrate the programmable quantum information processing capability of our system. Quantum information processing with trapped ion chains by