Results 1  10
of
59
The Markov Chain Monte Carlo method: an approach to approximate counting and integration
, 1996
"... In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stocha ..."
Abstract

Cited by 286 (12 self)
 Add to MetaCart
(Show Context)
In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stochastic processes hardly touches on the sort of nonasymptotic analysis required in this application. As a consequence, it had previously not been possible to make useful, mathematically rigorous statements about the quality of the estimates obtained. Within the last ten years, analytical tools have been devised with the aim of correcting this deficiency. As well as permitting the analysis of Monte Carlo algorithms for classical problems in statistical physics, the introduction of these tools has spurred the development of new approximation algorithms for a wider class of problems in combinatorial enumeration and optimization. The “Markov chain Monte Carlo ” method has been applied to a variety of such problems, and often provides the only known efficient (i.e., polynomial time) solution technique.
A Column Generation Approach For Graph Coloring
 INFORMS Journal on Computing
, 1995
"... We present a method for solving the independent set formulation of the graph coloring problem (where there is one variable for each independent set in the graph). We use a column generation method for implicit optimization of the linear program at each node of the branchandbound tree. This approac ..."
Abstract

Cited by 94 (2 self)
 Add to MetaCart
(Show Context)
We present a method for solving the independent set formulation of the graph coloring problem (where there is one variable for each independent set in the graph). We use a column generation method for implicit optimization of the linear program at each node of the branchandbound tree. This approach, while requiring the solution of a difficult subproblem as well as needing sophisticated branching rules, solves small to moderate size problems quickly. We have also implemented an exact graph coloring algorithm based on DSATUR for comparison. Implementation details and computational experience are presented. 1 INTRODUCTION The graph coloring problem is one of the most useful models in graph theory. This problem has been used to solve problems in school timetabling [10], computer register allocation [7, 8], electronic bandwidth allocation [11], and many other areas. These applications suggest that effective algorithms for solving the graph coloring problem would be of great importance. D...
What do we know about the Metropolis algorithm
 J. Comput. System. Sci
, 1998
"... The Metropolis algorithm is a widely used procedure for sampling from a specified distribution on a large finite set. We survey what is rigorously known about running times. This includes work from statistical physics, computer science, probability and statistics. Some new results are given ae an il ..."
Abstract

Cited by 89 (13 self)
 Add to MetaCart
The Metropolis algorithm is a widely used procedure for sampling from a specified distribution on a large finite set. We survey what is rigorously known about running times. This includes work from statistical physics, computer science, probability and statistics. Some new results are given ae an illustration of the geometric theory of Markov chains. 1. Introduction. Let % be a finite set and m(~)> 0 a probability distribution on %. The Metropolis algorithm is a procedure for drawing samples from X. It was introduced by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller [1953]. The algorithm requires the user to specify a connected, aperiodic Markov chain 1<(z, y) on %. This chain need not be symmetric but if K(z, y)>0, one needs 1<(Y, z)>0. The chain K is modified
On Counting Independent Sets in Sparse Graphs
, 1998
"... We prove two results concerning approximate counting of independent sets in graphs with constant maximum degree \Delta. The first implies that the Monte Carlo Markov chain technique is likely to fail if \Delta 6. The second shows that no fully polynomial randomized approximation scheme can exist if ..."
Abstract

Cited by 86 (13 self)
 Add to MetaCart
(Show Context)
We prove two results concerning approximate counting of independent sets in graphs with constant maximum degree \Delta. The first implies that the Monte Carlo Markov chain technique is likely to fail if \Delta 6. The second shows that no fully polynomial randomized approximation scheme can exist if \Delta 25, unless RP = NP. 1 Introduction Counting independent sets in graphs is one of several combinatorial counting problems which have received recent attention. The problem is known to be #Pcomplete, even for low degree graphs [3]. On the other hand, it has been shown that, for graphs of maximum degree \Delta = 4, randomized approximate counting is possible [7, 3]. This success has been achieved using the Monte Carlo Markov chain method to construct a fully polynomial randomized approximation scheme (fpras). This has led to a natural question as to how far this success might extend. Here we consider in more detail this question of counting independent sets in graphs with constant m...
Hiding Cliques for Cryptographic Security
 Des. Codes Cryptogr
, 1998
"... We demonstrate how a well studied combinatorial optimization problem may be introduced as a new cryptographic function. The problem in question is that of finding a "large" clique in a random graph. While the largest clique in a random graph is very likely to be of size about 2 log 2 n, it ..."
Abstract

Cited by 40 (0 self)
 Add to MetaCart
(Show Context)
We demonstrate how a well studied combinatorial optimization problem may be introduced as a new cryptographic function. The problem in question is that of finding a "large" clique in a random graph. While the largest clique in a random graph is very likely to be of size about 2 log 2 n, it is widely conjectured that no polynomialtime algorithm exists which finds a clique of size (1 + ffl) log 2 n with significant probability for any constant ffl ? 0. We present a very simple method of exploiting this conjecture by "hiding" large cliques in random graphs. In particular, we show that if the conjecture is true, then when a large clique  of size, say, (1+2ffl) log 2 n  is randomly inserted ("hidden") in a random graph, finding a clique of size (1 + ffl) log 2 n remains hard. Our result suggests several cryptographic applications, such as a simple oneway function. 1 Introduction Many hard graph problems involve finding a subgraph of an input graph G = (V; E) with a certain propert...
Simulated annealing for graph bisection
 in Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science
, 1993
"... We resolve in the affirmative a question of Boppana and Bui: whether simulated annealing can, with high probability and in polynomial time, find the optimal bisection of a random graph in Gnpr when p r = O(n*’) for A 5 2. (The random graph model Gnpr specifies a “planted ” bisection of density r, ..."
Abstract

Cited by 39 (1 self)
 Add to MetaCart
(Show Context)
We resolve in the affirmative a question of Boppana and Bui: whether simulated annealing can, with high probability and in polynomial time, find the optimal bisection of a random graph in Gnpr when p r = O(n*’) for A 5 2. (The random graph model Gnpr specifies a “planted ” bisection of density r, separating two n/2vertex subsets of slightly higher density p.) We show that simulated “annealing ” at an appropriate fixed temperature (i.e., the Metropolis algorithm) finds the unique smallest bisection in O(n2+‘) steps with very high probability, provided A> 1116. (By using a slightly modified neighborhood structure, the number of steps can be reduced to O(n’+‘).) We leave open the question of whether annealing is effective for A in the range 312 < A 5 1116, whose lower limit represents the threshold at which the planted bisection becomes lost amongst other random small bisections. It also remains open whether hillclimbing (i.e., annealing at temperature 0) solves the same problem. 1
Optimal detection of sparse principal components in high dimension
, 2013
"... We perform a finite sample analysis of the detection levels for sparse principal components of a highdimensional covariance matrix. Our minimax optimal test is based on a sparse eigenvalue statistic. Alas, computing this test is known to be NPcomplete in general, and we describe a computationally ..."
Abstract

Cited by 38 (4 self)
 Add to MetaCart
We perform a finite sample analysis of the detection levels for sparse principal components of a highdimensional covariance matrix. Our minimax optimal test is based on a sparse eigenvalue statistic. Alas, computing this test is known to be NPcomplete in general, and we describe a computationally efficient alternative test using convex relaxations. Our relaxation is also proved to detect sparse principal components at near optimal detection levels, and it performs well on simulated datasets. Moreover, using polynomial time reductions from theoretical computer science, we bring significant evidence that our results cannot be improved, thus revealing an inherent trade off between statistical and computational performance.
How hard is it to approximate the best Nash equilibrium?
, 2009
"... The quest for a PTAS for Nash equilibrium in a twoplayer game seeks to circumvent the PPADcompleteness of an (exact) Nash equilibrium by finding an approximate equilibrium, and has emerged as a major open question in Algorithmic Game Theory. A closely related problem is that of finding an equilibri ..."
Abstract

Cited by 31 (0 self)
 Add to MetaCart
(Show Context)
The quest for a PTAS for Nash equilibrium in a twoplayer game seeks to circumvent the PPADcompleteness of an (exact) Nash equilibrium by finding an approximate equilibrium, and has emerged as a major open question in Algorithmic Game Theory. A closely related problem is that of finding an equilibrium maximizing a certain objective, such as the social welfare. This optimization problem was shown to be NPhard by Gilboa and Zemel [Games and Economic Behavior 1989]. However, this NPhardness is unlikely to extend to finding an approximate equilibrium, since the latter admits a quasipolynomial time algorithm, as proved by Lipton, Markakis and Mehta [Proc. of 4th EC, 2003]. We show that this optimization problem, namely, finding in a twoplayer game an approximate equilibrium achieving large social welfare is unlikely to have a polynomial time algorithm. One interpretation of our results is that the quest for a PTAS for Nash equilibrium should not extend to a PTAS for finding the best Nash equilibrium, which stands in contrast to certain algorithmic techniques used so far (e.g. sampling and enumeration). Technically, our result is a reduction from a notoriously difficult problem in modern Combinatorics, of finding a planted (but hidden) clique in a random graph G(n, 1/2). Our reduction starts from an instance with planted clique size k = O(log n). For comparison, the currently known algorithms due to Alon, Krivelevich and Sudakov [Random Struct. & Algorithms, 1998], and Krauthgamer and Feige [Random Struct. & Algorithms, 2000], are effective for a much larger clique size k = Ω(√n).