Results 1  10
of
904
Data Clustering: A Review
 ACM COMPUTING SURVEYS
, 1999
"... Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exp ..."
Abstract

Cited by 1284 (13 self)
 Add to MetaCart
Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify crosscutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.
Statistical pattern recognition: A review
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques ..."
Abstract

Cited by 657 (22 self)
 Add to MetaCart
The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have bean receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the wellknown methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.
How many clusters? Which clustering method? Answers via modelbased cluster analysis
 THE COMPUTER JOURNAL
, 1998
"... ..."
Unsupervised learning of finite mixture models
 IEEE Transactions on pattern analysis and machine intelligence
, 2002
"... AbstractÐThis paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectationmaximization ..."
Abstract

Cited by 267 (20 self)
 Add to MetaCart
AbstractÐThis paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectationmaximization (EM) algorithm, it does not require careful initialization. The proposed method also avoids another drawback of EM for mixture fitting: the possibility of convergence toward a singular estimate at the boundary of the parameter space. The novelty of our approach is that we do not use a model selection criterion to choose one among a set of preestimated candidate models; instead, we seamlessly integrate estimation and model selection in a single algorithm. Our technique can be applied to any type of parametric mixture model for which it is possible to write an EM algorithm; in this paper, we illustrate it with experiments involving Gaussian mixtures. These experiments testify for the good performance of our approach. Index TermsÐFinite mixtures, unsupervised learning, model selection, minimum message length criterion, Bayesian methods, expectationmaximization algorithm, clustering. æ 1
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract

Cited by 247 (0 self)
 Add to MetaCart
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
Survey of clustering algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2005
"... Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the ..."
Abstract

Cited by 231 (3 self)
 Add to MetaCart
Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts. Several tightly related topics, proximity measure, and cluster validation, are also discussed.
Genetic Network Inference: From CoExpression Clustering To Reverse Engineering
, 2000
"... motivation: Advances in molecular biological, analytical and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using highthroughput gene expression assays, we are able to measure the output of the ge ..."
Abstract

Cited by 210 (0 self)
 Add to MetaCart
motivation: Advances in molecular biological, analytical and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using highthroughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of coexpression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiplecluster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e. who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and nonlinear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting and bioengineering.
Variable Neighborhood Search
, 1997
"... Variable neighborhood search (VNS) is a recent metaheuristic for solving combinatorial and global optimization problems whose basic idea is systematic change of neighborhood within a local search. In this survey paper we present basic rules of VNS and some of its extensions. Moreover, applications a ..."
Abstract

Cited by 201 (17 self)
 Add to MetaCart
Variable neighborhood search (VNS) is a recent metaheuristic for solving combinatorial and global optimization problems whose basic idea is systematic change of neighborhood within a local search. In this survey paper we present basic rules of VNS and some of its extensions. Moreover, applications are briefly summarized. They comprise heuristic solution of a variety of optimization problems, ways to accelerate exact algorithms and to analyze heuristic solution processes, as well as computerassisted discovery of conjectures in graph theory.
Blind Source Separation by Sparse Decomposition in a Signal Dictionary
, 2000
"... Introduction In blind source separation an Nchannel sensor signal x(t) arises from M unknown scalar source signals s i (t), linearly mixed together by an unknown N M matrix A, and possibly corrupted by additive noise (t) x(t) = As(t) + (t) (1.1) We wish to estimate the mixing matrix A and the M ..."
Abstract

Cited by 193 (32 self)
 Add to MetaCart
Introduction In blind source separation an Nchannel sensor signal x(t) arises from M unknown scalar source signals s i (t), linearly mixed together by an unknown N M matrix A, and possibly corrupted by additive noise (t) x(t) = As(t) + (t) (1.1) We wish to estimate the mixing matrix A and the Mdimensional source signal s(t). Many natural signals can be sparsely represented in a proper signal dictionary s i (t) = K X k=1 C ik ' k (t) (1.2) The scalar functions ' k
Extensions to the kMeans Algorithm for Clustering Large Data Sets with Categorical Values
, 1998
"... The kmeans algorithm is well known for its efficiency in clustering large data sets. However, working only on numeric values prohibits it from being used to cluster real world data containing categorical values. In this paper we present two algorithms which extend the kmeans algorithm to categoric ..."
Abstract

Cited by 156 (2 self)
 Add to MetaCart
The kmeans algorithm is well known for its efficiency in clustering large data sets. However, working only on numeric values prohibits it from being used to cluster real world data containing categorical values. In this paper we present two algorithms which extend the kmeans algorithm to categorical domains and domains with mixed numeric and categorical values. The kmodes algorithm uses a simple matching dissimilarity measure to deal with categorical objects, replaces the means of clusters with modes, and uses a frequencybased method to update modes in the clustering process to minimise the clustering cost function. With these extensions the kmodes algorithm enables the clustering of categorical data in a fashion similar to kmeans. The kprototypes algorithm, through the definition of a combined dissimilarity measure, further integrates the kmeans and kmodes algorithms to allow for clustering objects described by mixed numeric and categorical attributes. We use the well known soybean disease and credit approval data sets to demonstrate the clustering performance of the two algorithms. Our experiments on two real world data sets with half a million objects each show that the two algorithms are efficient when clustering large data sets, which is critical to data mining applications.